Revision A 18 July 2020

118.000 com

RRUS

AIRCRAFT DEVELOPMENT REALSIM GEAR AIRPLANE INFORMATION MANUAL

AVIATION

for X-Plane

860

NOT FOR FLIGHT - FOR SIMULATION USE ON

TS-SR22-AIM

Intro-I

Revision A 18 July 2020

Copyright © 2020

LeComp Simulation Services LLC d.b.a TorqueSim Aircraft Development

Acknowledgments

Special Thank You

Saso Kiselkov for libacfutils (https://github.com/skiselkov/libacfutils), and for help all along the development process!

Our Customers: Thank you for supporting us – We look forward to integrating your feedback and making this plane even better!

Our Testing Team

Aleem A.	Matteo P.	Paul B.
Cullen P.	Matthew C.	Rodney F
Dave L.	Max W.	Scott M.
Hannes S.	Moritz R.	

Developers

Cooper LeComp Systems Development, Avionics, UI, Documentation

Steaven McKenzie 3D Model, Textures, Liveries, FMOD Sounds

Marius Bohn Engine Model, Systems Development

X-Aerodynamics Flight Model

Saso Kiselkov Synthetic Vision Integration

RealSimGear

Jarrod Barker

Brad Mayer

The SR22 Series is Proudly Sold Exclusively through X-Aviation

Section I

General

Table of Contents

Introduction
The Airplane
Engine3
Propeller3
Fuel3
Oil3
Maximum Certificated Weights4
Specific Loadings4
Altitude Limits4
Maneuver Limits4
Flight Load Factor Limits4
Minimum Flight Crew4
Center of Gravity Limits5

Introduction

The X-Aviation Take Command! brand of products represents the very best of flight simulation immersion, and assures you this TorqueSim product is one of the most sophisticated, study sim level aircraft available for X-Plane! Real world pilots test and assist in the development of these products, and real world procedures are followed. It tells you these products are unlike any other product you've seen outside of the ever growing X-Aviation catalog! Want to feel like a real captain? Take Command!

The TorqueSim SR22 Series is the product of thousands of hours of work to craft the most accurate rendition of the SR22 for X-Plane. With the most in-depth systems and unparalleled accuracy, we are excited to share this product with you and hope you enjoy it. If you run into any issues, please be sure to contact us, you can find us by following the links below.

This manual is **not** comprehensive to the depth of the aircraft model. We highly recommend using the real manual and supplements instead of this manual when able. This manual, and product is solely **for personal, simulation use only** and does not represent the real aircraft.

Customer Support Information

X-Aviation (Sales, Installation, Activation): torques.im/xasupport

X-Pilot Forum (Support, Discussion, Help): torques.im/forum

TorqueSim (Aircraft Problems, Comments): torques.im/support

Bug Reporter (Discovered Issues): torques.im/bugs

THIS AIRCRAFT IS NOT AFFILIATED WITH OR ENDORSED BY REAL MANUFACTURERS, INCLUDING, BUT NOT LIMITED TO CIRRUS OR GARMIN.

FOR PERSONAL ENTERTAINMENT USE ONLY

DO NOT USE OUTSIDE OF SIMULATION

The Airplane

Engine

Number of Engines	I
Number of Cylinders	6
Engine Manufacturer	Teledyne Continental
Engine Model	IO-550-N
Fuel Metering	Fuel Injected
Engine Cooling	Air Cooled
Engine Type	Horizontally Opposed, Direct Drive
Horsepower Rating	310 hp @ 2700 rpm
Propeller	
Propeller Manufacturer	Hartzell
Propeller Type	Constant Speed, Three Blade
Model Number	PHC-J3YF-IRF/F7694(B)
Diameter	
Fuel	
Total Capacity	94.5 U.S. Gallons (358.0 L)
Total Usable	92.0 U.S. Gallons (348.0 L)
Approved Fuel Grades:	
100 LL Grade Aviation Fuel (Blue)	
100 (Form. 100/130) Grade Aviation Fuel (Green)	
Maximum Allowable Fuel Imbalance	10.0 U.S. Gallons (1/4 tank)
The fuel pump must be set to BOOS climb, landing, and when switching	ST for takeoff, fuel tanks.

Oil

Oil Capacity (Sump)	
Oil Grades:	
All Temperatures	SAE 15W-50, 20W-50, or 20W-60
Below 40°F (4°C)	SAE 30
Above 40°F (4°C)	SAE 50

Maximum Certificated Weights

Maximum Gross for Takeoff	3400 lbs (1542 kg)
Maximum Baggage for Compartment Loading	130 lbs (59 kg)
Standard Empty Weight	2250 lbs (1021 kg)
Maximum Useful Load	1150 lbs (522 kg)
Full Fuel Payload	610 lbs (277 kg)

Specific Loadings

Wing Loading	23.5 lbs/ft ²
Power Loading	I I .0 lbs/hp

Altitude Limits

Maximum Takeoff Altitude	. 10,000 ft MSL
Maximum Operating Altitude	. 17,500 ft MSL

Maneuver Limits

Aerobatic maneuvers and spins are prohibited

This airplane is certified in the normal category and is not designed for aerobatic operations. Only those operations incidental to normal flight are approved. These operations include normal stalls, chandelles, lazy eights, and turns in which the angle of bank is limited to 60°.

> Note Because the aircraft has not been certified for spin recovery, the Cirrus Airframe Parachute System (CAPS) must be deployed if the airplane departs controlled flight.

Flight Load Factor Limits

Flaps UP (0%), 3400 lbs	+3.8g, -1.9g
Flaps 50%	+1.9g, -0g
Flaps 100%, 3400 lbs	+1.9g, -0g

Minimum Flight Crew

The minimum flight crew is one pilot.

Center of Gravity Limits

Reference Datum	
Forward limit	Refer to figure below
Aft limit	

Section 2 Design Information Table of Contents

Electrical System	Aileron System	8
Power Generation2	Roll Trim System	8
Alternator I3	Rudder System	9
Alternator 2	TKS Anti-Ice System	10
Battery I3	Anti-Ice Limitations	10
Battery 23	Minimum Dispatch Fluid Quantity	10
Distribution Busses4	Deice Fluid Limits	
Engine5	Maximum Operating Time	
Engine Controls5	Flap Usage	
Engine Lubrication5	System Description	
Ignition and Starter6	System Control	12
Fuel Injection6	Modes	12
Cooling6	Indication	13
Propeller6	Oxygen System	13
Fuel System7	Flowmeters	14
Fuel Pump7	Bottle Pressure vs Capacity	15
Flight Controls	A5 Flow Meter Duration	15
Elevator8		
Pitch Trim System8		

Electrical System

The electrical system on the SR22 consists of 2 lead-acid batteries, 2 alternators, 3 distribution busses, and 9 individual busses, powering approximately 50 independent electrical items through circuit breakers. The individual busses are connected to their distribution busses either through a circuit breaker or a fuse. Controlling the behavior of the batteries, alternators, and distributions is the Master Control Unit which regulates the behavior.

Two batteries (battery I and battery 2) and two alternators (alternator I and alternator 2) are used in the power generation system on this airplane. Both batteries are used for power storage. The two alternators are very similar in design to each other.

The alternators and the batteries are designed to function in parallel or independently. Both alternators are self-exciting which means the alternators become energized as soon as either battery switch is moved to the "on" position. If an alternator becomes disconnected, the remaining alternator will still function properly, as long as the opposing alternator received initial excitation. If the alternators were initially excited from the batteries, they will continue to generate electrical power if either battery should fail. Because the alternators are self-exciting (not self-starting), the battery switches should never be turned off during flight.

Power Generation

During normal operation, the alternators feed their respective distribution bus independently (ALT I feeds Main Distribution Bus I and ALT 2 feeds Main Distribution Bus 2). The main distribution buses are interconnected by an 80-amp fuse and diode. The diode prevents ALT 2 from feeding Main Distribution Bus I. Additionally, since ALT 2 voltage is slightly higher than ALT I voltage, bus voltage is further assured.

The alternators are three-phase AC generator type; each alternator has an internal rectifier. Each alternator uses two diodes for each phase to rectify the output. In addition, these diodes will block reverse current. If a single output diode were to fail, the winding junction will be held to the output potential, reducing the quantity of current the alternator can produce.

The alternators are regulated by the MCU and power the MCU. Alternator 1 is protected by an 100-amp fuse within the MCU while alternator 2 is protected by a 80 amp fuse within the MCU. ALT 1 is connected to the Main Distribution Bus 1 and ALT 2 is connected to the Main Distribution Bus 2. Each alternator system has its own 5-amp alternator circuit breaker located in the circuit breaker panel. Each alternator is individually protected against overvoltage generation by the field control module, located within the MCU. ALT 1 is regulated to 28 volts and ALT 2 is regulated to 28.75 volts.

Voltage output of each alternator is a function of engine RPM, alternator design, and load on the alternator. During low RPM operation, the alternator will require higher engine RPM to provide the same voltage to increased electrical loads.

The drop off RPM for each alternator will change whenever the electrical system loads are altered from nominal. When an alternator drops off line, a message will appear on the MFD. If

an alternator drops off line due to low engine RPM, the alternator can be restarted by simply increasing engine RPM. When alternator 2 drops off line, alternator 1 will power the Essential Bus through the Main Distribution Bus 1 in the MCU. When alternator 1 drops off line, alternator 2 will power the Essential Bus through the Main Distribution Bus 2 in the MCU.

Alternator I

The front alternator (alternator I) is mounted directly to the front of the engine on the copilots' side. Alternator I is a 100-amp engine-driven alternator.

Alternator I is controlled by the ALT I master switch located in the bolster panel. Battery I and alternator I are independently controlled and can be alternately connected to Main Bus 2. Failure or malfunction of alternator I will not impair the capability of the main battery to provide power to Main Bus 2.

Failure or malfunction of either or both alternators will not impair the capability of either battery to power the essential load circuits, because each of these power sources feed into the Essential Bus. If either alternator is lost, the other alternator and both batteries are still capable of feeding the Essential Bus. In addition, each alternator or battery can be manually disconnected by switching the appropriate master bolster switch located on the pilot's bolster switch panel.

Alternator 2

Alternator 2 is a 70-amp belt-driven alternator mounted to the left front of the engine. Alternator 2 supplies electrical power to Essential Bus 2 through a 5-amp circuit breaker located in the circuit breaker panel. Alternator 2 is controlled by the ALT 2 switch located in the bolster panel. If alternator 2 fails while in operation, the Essential Bus will then get electrical power from alternator 1, battery 1, and/or battery 2.

Battery I

Battery I is a 24-volt, valve regulated, lead-acid aviation-grade type battery. The battery is mounted in the engine compartment. The battery is used for engine starting and can also be used as an emergency power source in the event Battery 2 or either alternator fails. Battery I provides all the electrical power for starting the aircraft. Battery I also supplies the electrical power to the landing light in the event Alternator I fails. Battery I is independently controlled by the BAT I switch, located in the pilot's bolster panel. The BAT I switch energizes a relay in the MCU which will connect BAT I to the Main Distribution Bus.

Battery 2

Battery 2 is a maintenance free rechargeable sealed lead acid battery. The battery consists of two 12-volt, 6-cell, 18-amp-hour batteries connected in series to provide 24VDC to the Essential Bus. There is no need to check the specific gravity of the electrolyte or add water to these batteries during their service life.

Battery 2 is independently controlled by using the BAT 2 switch, located in the pilot's bolster panel. The BAT 2 switch energizes a relay located just aft of bulkhead 222 in the MCU which will connect BAT 2 to the Essential Bus. The electrical power from BAT 2 reaches the Essential Bus through the circuit breaker panel. Battery 2 is mounted directly behind bulkhead 222 in an acid resistant battery container.

Battery 2 is primarily used to power the Essential Bus. The Essential Bus delivers electrical power to the annunciator lights, turn coordinator, attitude indicator, horizontal situation indicator (HSI), stall warning system, and alternator 2.

Failure of the BAT 1 will not affect the ability of BAT 2 to provide necessary power to the Essential Bus. Because of diode protection, a failure or malfunction of the BAT 1 will not affect BAT 2 or either alternator output.

Prior to engine start-up, the pilot must activate only the BAT 2 switch to verify that BAT 2 properly energizes the electrical loads powered by the Essential Bus and that BAT 2 has proper voltage.

Distribution Busses

Essential Distribution	Bus	Essential Bus I
		Essential Bus 2
Main Distribution Bus	I	A/C Bus I
		A/C Bus 2
		Main Bus 3
Main Distribution Bus	2	Non-Essential Bus
		Main Bus I
		Main Bus 2

TorqueSim SR22/SR22TN Engine

The airplane is powered by a Teledyne Continental IO-550-N, six-cylinder, normally aspirated, fuel-injected engine rated to 310 hp at 2700 RPM. The engine has a 2000-hour Time Between Overhaul (TBO). Dual, conventional magnetos provide ignition.

The engine is attached to the firewall by a six-point steel engine mount. The firewall attach points are structurally reinforced with gusset-type attachments that transfer thrust and bending loads into the fuselage shell.

Engine Controls

The single-lever throttle control, labeled MAX-POWER-IDLE, on the console adjusts the engine throttle setting in addition to automatically adjusting propeller speed. The lever is mechanically linked by cables to the air throttle body/fuel-metering valve and to the propeller governor. Moving the lever towards MAX opens the air throttle butterfly and meters more fuel to the fuel manifold. A separate cable to the propeller governor adjusts the governor oil pressure to increase propeller pitch to maintain engine RPM. The system is set to maintain approximately 2500 RPM throughout the cruise power settings and 2700 RPM at full power.

The mixture control lever, labeled RICH-MIXTURE-CUTOFF, on the console adjusts the proportion of fuel to air for combustion. The Mixture Control Lever is mechanically linked to the mixture control valve in the engine-driven fuel pump. Moving the lever forward (towards RICH) repositions the valve allowing greater proportions of fuel and moving the lever aft (towards CUTOFF) reduces (leans) the proportion of fuel. The full aft position (CUTOFF) closes the control valve.

An Alternate Induction Air Control knob, labeled ALT AIR – PULL, is installed on the left console near the pilot's right knee. To operate the control, depress the center lock button, pull the knob to the open position, and then release the lock button. Pulling the knob opens the alternate air induction door on the engine induction air manifold, bypasses the air filter, and allows warm unfiltered air to enter the engine. Alternate induction air should be used if blocking of the normal air source is suspected. Operation using alternate induction air should be minimized and the cause of filter blocking corrected as soon as practical.

Engine Lubrication

The engine is provided with a wet-sump, high-pressure oil system for engine lubrication and cooling. Oil for engine lubrication is drawn from an eight-quart capacity sump through an oil suction strainer screen and directed through the oil filter to the engine-mounted oil cooler by a positive displacement oil pump. The oil pump is equipped with a pressure relief valve at the pump output end to bypass oil back to the pump inlet should the pump exceed limits. The oil cooler is equipped with a temperature control valve set to bypass oil if the temperature is below approximately 180°F (82°C). Bypass or cooled oil is then directed through oil galleries to the engine rotating parts and piston inner domes. Oil is also directed to the propeller governor to regulate propeller pitch. The complete oil system is contained in the engine. An oil filler cap and dipstick are located at the left rear of the engine. The filler cap and dipstick are accessed through a door on the top left side of the engine cowling.

TorqueSim SR22/SR22TN Ignition and Starter

Two engine-driven magnetos and two spark plugs in each cylinder provide engine fuel ignition. The right magneto fires the lower right and upper left spark plugs, and the left magneto fires the lower left an upper right spark plugs. Normal operation is conducted with both magnetos, as more complete burning of the fuel-air mixture occurs with dual ignition. A rotary-type key switch, located on the instrument panel, controls ignition and starter operation. The switch is labeled OFF-R-L- BOTH-START. In the OFF position, the starter is electrically isolated, the magnetos are grounded and will not operate. Normally, the engine is operated on both magnetos (switch in BOTH position) except for magneto checks and emergency operations. The R and L positions are used for individual magneto checks and for single magneto operation when required. When the battery master switch is ON, rotating the switch to the spring loaded START position energizes the starter and activates both magnetos. The switch automatically returns to the BOTH position when released.

28 VDC for Starter operation is supplied through the 2-amp STARTER circuit breaker on NON-ESSENTIAL BUS.

Fuel Injection

The multi-nozzle, continuous-flow fuel injection system supplies fuel for engine operation. An engine driven fuel pump draws fuel from the selected wing tank and passes it to the mixture control valve integral to the pump. The mixture control valve proportions fuel in response to the pilot operated mixture control lever position. From the mixture control, fuel is routed to the fuel-metering valve on the air-induction system throttle body. The fuel-metering valve adjusts fuel flow in response to the pilot controlled Power Lever position. From the metering valve, fuel is directed to the fuel manifold valve (spider) and then to the individual injector nozzles. The system meters fuel flow in proportion to engine RPM, mixture setting, and throttle angle. Manual mixture control and idle cut-off are provided. An electric fuel pump provides fuel boost for vapor suppression and for priming.

Cooling

Engine cooling is accomplished by discharging heat to the oil and then to the air passing through the oil cooler, and by discharging heat directly to the air flowing past the engine. Cooling air enters the engine compartment through the two inlets in the cowling. Aluminum baffles direct the incoming air to the engine and over the engine cylinder cooling fins where the heat transfer takes place. The heated air exits the engine compartment through two vents in the aft portion of the cowling. No movable cowl flaps are used.

Propeller

The airplane is equipped with a constant-speed, aluminum-alloy propeller with a three-blade (78" diameter) propeller and governor.

The propeller governor automatically adjusts propeller pitch to regulate propeller and engine RPM. The propeller governor senses engine speed by means of flyweights and senses throttle setting through a cable connected to the power (throttle) control lever in the cockpit. The propeller governor boosts oil pressure in order to regulate propeller pitch position. Moving the throttle lever forward causes the governor to meter less high-pressure oil to the

propeller hub allowing centrifugal force acting on the blades to lower the propeller pitch for higher RPM operation. Reducing the power (throttle) lever position causes the governor to meter more high-pressure oil to the propeller hub forcing the blades to a higher pitch, lower RPM, position. During stabilized flight, the governor automatically adjusts propeller pitch in order to maintain an RPM setting (throttle position). Any change in airspeed or load on the propeller results in a change in propeller pitch.

Fuel System

An 92-gallon usable wet-wing fuel storage system provides fuel for engine operation. The system consists of a 47.25-gallon capacity (46gallon usable) vented integral fuel tank and a fuel collector/sump in each wing, a three position selector valve, an electric fuel pump, and an engine-driven fuel pump. Fuel is gravity fed from each tank to the associated collector sumps where the engine-driven fuel pump draws fuel through a filter and selector valve to pressure feed the engine fuel injection system. The electric fuel pump is provided for engine priming and vapor suppression.

Float-type fuel quantity sensors in each wing tank supply fuel level information to the fuel quantity gages. Positive pressure in the tank is maintained through a vent line from each wing tank. Fuel, from each wing tank, gravity feeds through strainers and a flapper valve to the associated collector tank in each wing. Each collector tank/sump incorporates a flush mounted fuel drain and a vent to the associated fuel tank.

The engine-driven fuel pump pulls filtered fuel from the two collector tanks through a threeposition (LEFT-RIGHT-OFF) selector valve. The selector valve allows tank selection. From the fuel pump, the fuel is metered to a flow divider, and delivered to the individual cylinders. Excess fuel is returned to the selected tank.

A dual-reading fuel-quantity gauge is located in the center console next to the fuel selector in plain view of the pilot.

The airplane may be serviced to a reduced capacity to permit heavier cabin loadings. This is accomplished by filling each tank to a tab visible below the fuel filler, giving a reduced fuel load of 30.0 gallons usable in each tank (60 gallons total usable in all flight conditions).

Fuel Pump

Fuel pump operation and engine prime is controlled through the Fuel Pump switch located adjacent to the fuel selector valve. The PRIME position is momentary and the BOOST position is selectable. A two-speed prime allows the fuel pressure to rapidly achieve proper starting pressure.

An oil pressure based system is used to control fuel pump operation. The oil pressure/oil temperature sensor provides a signal to the starting circuit to generate a ground for the oil annunciator and the fuel system. This system allows the fuel pump to run at high speed (PRIME) when the engine oil pressure is less than 10 PSI. Whenever the engine oil pressure exceeds 10 PSI, pressing PRIME will have no effect. Selecting BOOST energizes the fuel pump in low-speed mode regardless of oil pressure to deliver a continuous 4-6 psi boost to the fuel flow for vapor suppression in a hot fuel condition.

The fuel pump operates on 28VDC supplied through the 5-amp FUEL PUMP circuit breaker on MAIN BUS 2.

Flight Controls

Elevator

The two-piece elevator provides airplane pitch control. The elevator is of conventional design with skin, spar and ribs manufactured of aluminum. Each elevator half is attached to the horizontal stabilizer at two hinge points and to the fuselage tailcone at the elevator control sector. Elevator motion is generated through the pilot's control yokes by sliding the yoke tubes forward or aft in a bearing carriage. A push-pull linkage is connected to a cable sector mounted on a torque tube. A single cable system runs from the forward elevator sector under the cabin floor to the aft elevator sector pulley. A push-pull tube connected to the aft elevator sector bellcrank attached to the elevators.

Pitch Trim System

Pitch trim is provided by adjusting the neutral position of the compression spring cartridge in the elevator control system by means of an electric motor. It is possible to easily override full trim or autopilot inputs by using normal control inputs. A ground adjustable trim tab is installed on the elevator to provide small adjustments in neutral trim. This tab is factory set and does not normally require adjustment. An electric motor changes the neutral position of the spring cartridge attached to the elevator control horn. A conical trim button located on top of each control yoke controls the motor. Moving the switch forward will initiate nosedown trim and moving the switch aft will initiate nose-up trim. Neutral (takeoff) trim is indicated by the alignment of a reference mark on the yoke tube with a tab attached to the instrument panel bolster. The elevator trim also provides a secondary means of airplane pitch control in the event of a failure in the primary pitch control system not involving a jammed elevator.

Elevator (pitch) trim operates on 28 VDC supplied through the 2-amp PITCH TRIM circuit breaker on ESS BUS 2.

Aileron System

The ailerons provide airplane roll control. The ailerons are of conventional design with skin, spar and ribs manufactured of aluminum. Each aileron is attached to the wing shear web at two hinge points.

Aileron control motion is generated through the pilot's control yokes by rotating the yokes in pivoting bearing carriages. Push rods link the pivoting carriages to a centrally located pulley sector. A single cable system runs from the sector to beneath the cabin floor and aft of the rear spar. From there, the cables are routed in each wing to a vertical sector/crank arm that rotates the aileron through a right angle conical drive arm.

Roll Trim System

Roll trim is provided by adjusting the neutral position of a compression spring cartridge in

the aileron control system by means of an electric motor. The electric roll trim is also used by the autopilot to position the ailerons. It is possible to easily override full trim or autopilot inputs by using normal control inputs.

An electric motor changes the neutral position of a spring cartridge attached to the left actuation pulley in the wing. A conical trim button located on top of each control yoke controls the motor. Moving the switch left will initiate left-wing-down trim and moving the switch right will initiate right-wing-down trim. Neutral trim is indicated by the alignment of the line etched on the control yoke with the centering indication marked on the instrument panel. The aileron trim also provides a secondary means of airplane roll control in the event of a failure in the primary roll control system not involving jammed ailerons.

Aileron trim operates on 28VDC supplied through the 2-amp ROLL TRIM circuit breaker on ESS BUS 2.

Rudder System

The rudder provides airplane directional (yaw) control. The rudder is of conventional design with skin, spar and ribs manufactured of aluminum. The rudder is attached to the aft vertical stabilizer shear web at three hinge points and to the fuselage tailcone at the rudder control bell crank.

Rudder motion is transferred from the rudder pedals to the rudder by a single cable system under the cabin floor to a sector next to the elevator sector pulley in the aft fuselage. A push-pull tube from the sector to the rudder bell crank translates cable motion to the rudder. Springs and a ground adjustable spring cartridge connected to the rudder pedal assembly tension the cables and provide centering force.

TKS Anti-Ice System

This system, when compliant with the Kinds of Operation Equipment List and Minimum Dispatch Fluid Quantity, allows flight in icing conditions.

In icing conditions the airplane must be operated as described in the operating procedures section of this manual. Where specific operational speeds and performance information have been established for such conditions, this information must be used.

At the first sign of Anti-Ice System malfunction, the aircraft must immediately exit icing conditions.

Flight into freezing rain or freezing drizzle is prohibited.

Inadvertent operation in freezing rain, freezing drizzle, mixed conditions, or conditions defined as severe may be detected by:

- Visible rain at temperatures below 41°F (5°C) OAT.
- Droplets that splash or splatter on impact at temperatures below below 41°F (5°C) OAT.
- Ice on or behind the wing or horizontal tail panels that cannot be removed with Anti-Ice System HIGH flow.
- Unusually extensive ice accreted on the airframe in areas not normally observed to collect ice.
- Accumulation of ice on the upper surface or lower surface of the wing aft of the protected area.
- Accumulation of ice on the propeller spinner farther back than normally observed.

If the airplane encounters conditions that are determined to contain freezing rain, freezing drizzle, or severe icing, immediately exit condition by changing altitude, turning back, or if clear air is known to be immediately ahead, continue on course.

Anti-Ice Limitations

Minimum Airspeed for flight into known icing conditions	95 KIAS
Maximum Airspeed with Anti-Ice System operation	.177 KIAS / 204 KTAS
Recommended holding airspeed	I 20 KIAS
Maximum weight for flight into known icing conditions	3400 lbs
Takeoff is prohibited with any ice, snow, frost, or slush adhering to the wing, stabilizers, control surfaces, propeller blades, or engine inlet.	
Minimum Operating Temperature	

Minimum Dispatch Fluid Quantity

Dispatch into known icing conditions with less than 5 gallons (19 liters) of deicing fluid is

prohibited. The pilot must ensure adequate fluid quantity before each flight. If dispatching without the minimum 5 gallons and icing conditions are encountered, exit icing conditions as soon as possible.

Duration Times for 5 Gallon Minimum Dispatch Fluid Quantity:

NORM	
HIGH	45 Minutes
MAX	

Deice Fluid Limits

Usable Tank Capacity	8 gallons (30 L)
Tank Capacity	8.5 gallons (32 L)

Maximum Operating Time

Normal Flow	I 50 Minutes (3.2 gph)
High Flow	75 Minutes (6.4 gph)
Maximum Flow	

Flap Usage

Unless required for Emergency operations (i.e. Forced Landing), Flaps are limited to a maximum deflection of 50% when the aircraft has encountered icing conditions and/or has accumulated ice on the airframe

When holding in icing conditions the flaps must be UP (0%).

System Description

The TKS Anti-Ice System can prevent and remove ice accumulation on the flight surfaces by distributing a thin film of ice protection fluid on the wing, horizontal stabilizer, vertical stabilizer, elevator tips, and propeller. The presence of this fluid lowers the freezing temperature on the flight surface below that of the ambient precipitation preventing the formation and adhesion of ice.

The system consists of nine porous panels, propeller slinger ring, windshield spray nozzles, heated stall warning system, ice inspection lights, two proportioning units, two metering pumps, windshield/ priming pump, 3-way control valve, filter assembly, in-line strainer, outlet strainers, two fluid tanks with fluid level sensors and low level switches, filler caps and necks, test port assembly, electrical switching, and system plumbing. The system operates on 28 VDC supplied through the 7.5-amp ICE PROTECT A circuit breaker on Main Bus I and 5-amp ICE PROTECT B circuit breaker on Essential Bus 2.

Two separate and symmetrical 4.25 gallon (16.1L) deicing fluid tanks are serviced through filler caps located on the upper LH and RH wings. Each tank provides a capacity of 4.0 gallons (15.1L) usable and 0.25 gallons (1.0L) unusable, which provides a total system capacity of 8.0 gallons (30.2L) usable. The tanks are sealed wet bays, integral to the wing structure, bounded by the upper and lower wing skins, main spar web, and the inboard, outboard, and lateral tank

Section 2 Design Information

TorqueSim SR22/SR22TN

ribs. The tanks are vented from the outboard ribs to a NACA style ducts attached to access panels on the lower wing skin, just outboard of the tanks. Course-mesh outlet strainers mounted internal to the tanks prevent large objects from obstructing the tank outlets, while a fine-mesh in- line strainer protects the metering pump and windshield/priming pump from damage by contaminates

Upon activation, two single-speed metering pumps, mounted below the LH passenger seat, draw fluid from the tank and provide fluid pressure to the system at a constant-volume flow rate. The pumps operate both singularly and in parallel according to system mode selection.

If the system is ON and PUMP BKUP is selected, #1 pump will operate (if not failed) based on the mode setting (NORM or HIGH) while #2 pump operates continuously (PUMP BKUP), causing the range and endurance to decrease from the published values, e.g. selection of HIGH and PUMP BKUP will reduce range and endurance as if MAX were selected.

The manifolds of both metering pumps are connected in series and primed by an integral windshield/priming pump which draws fluid from the tank, through both metering pump manifolds, forcing the fluid to the windshield spray nozzles. In the event the metering pumps cannot prime themselves, the windshield/priming pump can be activated to draw fluid from the tank to prime the metering pump manifolds and to remove any entrapped air between the metering pumps and the fluid tank(s). A normally-closed solenoid located between the windshield pump and spray nozzles prevents fluid back flow to the metering pumps. From the metering pumps, deicing fluid is pushed through a filter assembly, mounted adjacent to the pumps, and then carried through nylon tubing to the proportioning units located in the cabin floor- forward and empennage.

• The cabin floor-forward proportioning unit distributes fluid to the LH and RH Wing Inboard and Outboard panels and propeller slinger ring assembly.

• The empennage proportioning unit distributes fluid to the horizontal and vertical stabilizer panels and the elevator tip panels.

In addition to distributing fluid to the porous panels and propeller slinger ring, the proportioning units provide an additional, distinct pressure drop to the supply lines such that a specific flow rate is provided to each protected surface.

System Control

The system is controlled from both switches on the bolster panel, and the "Engine" page on the G1000 MFD using the MFD soft-keys.

The bolster panel switches control flow rate (NORM, HIGH, and MAX), as well as windshield anti-ice. Pump Backup can be selected in the case of failures.

The G1000 MFD controls tank selection (AUTO, Left, and Right).

Modes

- NORM: Both pumps at quarter time (30 seconds on, 90 seconds off) (100% Flow Rate).
- HIGH: Pump #1 continuously (200% Flow Rate).

- MAX: Both pumps continuously for 2 minutes (400% Flow Rate). After two minutes, the mode reverts to the switch selection.
- WINDSHLD: Triggers the windshield pump to operate for 3 seconds.
- PUMP BKUP: Pump #2 continuously (200% Flow Rate).

Indication

System Indicating is displayed as bar graphs and text in the lower left corner of the MFD ENGINE page. The bar graphs, marked from 0 to 4 U.S. gallons in 1-gallon increments, indicate LH and RH tank fluid quantity. Fluid quantity is also displayed numerically below the bar graphs in 0.1-gallon increments. When the system is operating in the default, automatic tank selection mode (AUTO), a white box is centered around the "L" and "R" located above each bar graph and a cyan box is displayed around the selected Anti-Ice System mode. During normal operation, the white box will switch between the left and right tank as the fluid level changes. Manual tank selection mode is selected by pressing the ANTI-ICE softkey to access control of the LEFT and RIGHT tanks. In manual mode, a cyan box is displayed around the selected tank, gallons remaining in that tank, and the selected Anti-Ice System mode. Pressing AUTO returns the system to automatic tank selection mode.

System Endurance is displayed on the MFD ENGINE Page for the different system modes based on the total sensed fluid quantity and published system flow rates. A cyan box depicts the user selected system mode. System Range is displayed on the MFD ENGINE Page for the selected system mode based on the calculated system endurance and the current ground speed.

If tanks are selected manually, system range and endurance calculations use only the sensed fluid quantity of the selected tank. While in PUMP BKUP, system range and endurance calculations use the sensed system flow rate of the flow meter.

Oxygen System

The system consists of a 77 ft³ oxygen bottle with pressure regulator assembly located in the aft fuselage, a distribution manifold in the headliner, a control panel on the center console, a filler port with oxygen gauge on the aft wall of the baggage compartment, , and up to five (5) flow devices consisting of either constant flow meters, or demand regulators, with either a cannula or face mask for each user. The A4/A5 flowmeters are adjustable for altitude to supply oxygen to either oxygen conserving cannulas, standard cannula, up to 18,000ft, or masks for altitudes up to the maximum operating altitude of the Cirrus SR22 /SR22TN.

The cockpit control electrically actuates the regulator allowing oxygen flow into the aircraft cabin. The cockpit control will annunciate O2 REQ'D if the System is not selected ON and the aircraft is above approx. I2,000ft PA to alert the requirement of oxygen in the cabin. Once the oxygen is selected ON, the quantity display illuminates indicating the presence of oxygen in the cabin. Quantity and system status is both visible on the oxygen control panel and G1000 MFD.

In the event of an electrical failure on Main Bus 2, oxygen will remain on in the cabin. Aircraft electrical power is required ONLY to turn the System ON and OFF. The System is designed to remain ON during an electrical failure, but oxygen quantity indication will be lost. Disconnecting the lines from the manifold will prevent the free flow of oxygen in the cabin.

WARNING

The Cirrus Perspective Aircraft Alerts are considered Secondary Annunciation and the primary warning and advisory annunciation is provided on the Oxygen System Display.

Flowmeters

The constant flowmeters are calibrated and adjustable for altitude to supply oxygen to either oxygen conserving, or standard, cannulas up to a maximum altitude of 18,000ft MSL, or masks for altitudes up to a maximum of altitude of 25,000ft MSL , or the maximum operating altitude of the aircraft whichever is lower. The flowmeters provide the means to distribute the appropriate amount of oxygen for the pressure altitude of flight and indicate the presence of oxygen flowing to the pilot and/or passengers. The flowmeter should be checked periodically (recommended intervals of less than 10 min) as well as the oxygen quantity gauge. The flowmeter should be readjusted with each change in pressure altitude or physiological requirement.

WARNING

Do not use oxygen while utilizing lipstick, Chapstick, petroleum jelly or any other product containing oil or grease. Smoking is not permitted while using the Oxygen System.

Bottle Pressure vs Capacity

A5 Flow Meter Duration

Section 3

Normal Procedures

Table of Contents

Preflight Checks2
Walkaround2
Cabin2
Left Fuselage2
Empennage3
Right Fuselage3
Right Wing Trailing Edge3
Nose, Right Side4
Nose gear, Propeller, Spinner4
Nose, Left Side4
Left Main Gear and Forward Wing4
Left Wing Tip5
Left Wing Trailing Edge5
Before Starting Engine5
Starting Engine6
Hot Engine Start8
Flooded Engine Start8
False Engine Start9
Before Taxiing9
Taxiing10
Before Takeoff10

Takeoff	2
Normal Takeoff	3
Short Field Takeoff	3
Climb	3
Cruise	4
Cruise LeaningI4	4
Descent	4
Before Landing	5
Landing	5
Normal LandingI	5
Short Field LandingI	5
Crosswind Landing	5
Balked Landing/Go-Around	6
After LandingId	6
Shutdown	7

TorqueSim SR22/SR22TN Preflight Checks

Walkaround

Before starting the walk around inspection remove the pitot head cover, control locks, and battery vent plug. During the external inspection, perform a general check of airframe condition and the security of all fasteners and control hinges and attachments.

Cabin

Required Documents	On Board
Avionics Power Switch	Off
Battery 2 Master Switch	On
PFD	Verify On
Essential Bus Voltage	
Flap Position Light	Out
Battery I Master Switch	On
Avionics Cooling Fan	Audible
Lights	Check Operation
Stall Warning	Test

Test stall warning system by applying suction to the stall warning system inlet and noting the warning horn sounds

Fuel Quantity	Check
Fuel Selector	Select Fullest Tank
Flaps	100%, Check Light On
Oil Annunciator	On
Battery I and 2 Master Switches	Off
Alternate Static Source	Normal
Circuit Breakers	In
Fire Extinguisher	Charged and Available
Emergency Egress Hammer	Available
CAPS Handle	Pin Removed
Left Fuselage	
Door Lock	Unlock

COM I Antenna Condition and Attachment

Section 3 Normal Procedures

22/SK221N	Norma
Transponder Antenna	Condition and Attachment
Wing/Fuselage Fairing	Check
COM 2 Antenna	Condition and Attachment
Baggage Door	Closed and Secure
Static Button	Check for Blockage
Parachute Cover	Sealed and Secure
Empennage	

Tiedown Rope	Remove
Horizontal and Vertical Stabilizers	Condition

Note

Verify tape covering the front and aft inspection holes located on outboard ends of horizontal stabilizer is installed and securely attached

Elevator and Tab	Condition and Movement
Rudder	Freedom of Movement
Rudder Trim Tab	Condition and Security
Attachment hinges, bolts, and cotter pins	Secure

Right Fuselage

Static Button	Check for Blockage
Wing/Fuselage Fairings	Check
Door Lock	Unlock

Right Wing Trailing Edge

Leading Edge and Stall Strips	Condition
Fuel Cap	Check Quantity and Secure
Fuel Drains (2)	Drain and Sample
Wheel Fairings	Security, Accumulation of Debris
Tire	

CAUTION

Clean and inspect temperature indicator attached to piston housing. If indicator center is black, the brake assembly has been overheated. The brake linings must be inspected and O-rings replaced

KZZ/SKZZTIN	INORMA
Wheels and Brakes	Fluid Leaks, Evidence of Overheating, General Condition, Security
Chocks and Tiedown ropes	
Cabin Air Vent	Unobstructed

Nose, Right Side

Vortex Generator	Condition
Cowling	Attachments Secure
Exhaust Pipe	Condition, Security, and Clearance
Gascolator	Drain for 3 seconds, sample

Nose gear, Propeller, Spinner

WARNING

KEEP CLEAR OF PROPELLER ROTATION PLANE. DO NOT ALLOW OTHERS TO APPROACH PROPELLER.

Tow Bar	Remove and Stow
Strut	Condition
Wheel Fairing	Security, Accumulation of Debris
Wheel and Tire	Condition, Inflation, and Wear
Propeller	Condition (indentations, nicks, etc.)
Spinner	Condition, Security, and Oil Leaks
Air Inlets	Unobstructed
Alternator	Condition

Nose, Left Side

Landing Light	Condition
Engine Oil	Check 6-8 quarts, Leaks, Cap and Door Secure
Cowling	Attachments Secure
External Power	Door Secure
Vortex Generator	Condition
Exhaust Pipes	Condition, Security, and Clearance
Left Main Gear and Forward Wing	
Wheel fairings	Security Accumulation of Debris

Whee	fairings	Security, A	Accumulation	of Debi	٦IS
Tire		Condit	ion, Inflation,	and We	ar

CAUTION

Clean and inspect temperature indicator attached to piston housing. If indicator center is black, the brake assembly has been overheated. The brake linings must be inspected and O-rings replaced

Wheel and Brakes...... Fluid Leaks, Evidence of Overheating General Condition, and Security

Remove
Drain and Sample
Unobstructed
Check Quantity and Secure
Condition

Left Wing Tip

Fuel Vent (underside)	Unobstructed
Pitot Mast (underside)	Cover Removed, Tube Clear
Strobe, Nav Light, and Lens	Condition and Security
Тір	Attachment

Left Wing Trailing Edge

Flap and Rub Strips	Condition and Security
Aileron	Freedom of movement
Aileron Gap Seal	Security
Hinges, actuation arm, bolts, and cotter pins	Secure

Before Starting Engine

Preflight Inspection COMPLETED

WARNING

Ensure that the airplane is properly loaded and within the weight and balance limitations prior to takeoff

Weight and Balance	Verify within limits
Emergency Equipment	ON BOARD
Passengers	BRIEFED

use of seat belts, doors, emergency exits, egress hammer, and CAPS prior to engine start	
CAPS Handle Safety Pin REM	OVED
Seats, Seat Belts, and Harnesses ADJUST and SI	CURE

CAUTION

Crew seats must be locked in position and control handles fully down before flight. Ensure seat belt harnesses are not twisted

Starting Engine

If the engine is warm, no priming is required. For the first start of the day and in cold conditions, prime will be necessary.

Weak intermittent firing followed by puffs of black smoke from the exhaust stack indicates overpriming or flooding. Excess fuel can be cleared from the combustion chambers by the following procedure:

- Turn fuel pump off.
- Allow fuel to drain from intake tubes.
- Set the mixture control full lean and the power lever full open.
- Crank the engine through several revolutions with the starter.
- When engine starts, release ignition switch, retard power lever, and slowly advance the mixture control to FULL RICH position.

If the engine is under-primed, especially with a cold soaked engine, it will not fire, and additional priming will be necessary. As soon as the cylinders begin to fire, open the power lever slightly to keep it running. Refer to Cold Weather Operation in this section or additional information regarding cold weather operations.

WARNING

If airplane will be started using external power, keep all personnel and power unit cables well clear of the propeller rotation plane.

CAUTION

Alternators should be left OFF during engine starting to avoid high electrical loads.

After starting, if the oil gage does not begin to show pressure within 30 seconds in warm weather and about 60 seconds in very cold weather, shut down engine and investigate cause. Lack of oil pressure indicates loss of lubrication, which can cause severe engine damage.

Brakes	HOLD
Bat Master Switches	ON (Check Volts)
Strobe Lights	ON
Mixture	FULL RICH
Power Lever	FULL FORWARD
Fuel Pump	PRIME, then BOOST

On first start of the day, especially under cool ambient conditions, holding Fuel Pump switch to PRIME for 2 seconds will improve starting.

Propeller Area	CLEAR
Power Lever	Open ¼ INCH
Ignition Switch	START (Release after engine starts)

CAUTION

Limit cranking to intervals of 20 seconds with a 20 second cooling period between cranks. This will improve battery and contactor life.

Power Lever	RETARD (to maintain 1000 RPM)
Oil Pressure	CHECK
Alt Master Switches	ON
Avionics Power Switch	ON
Engine Parameters	MONITOR
Amp Meter/Indication	CHECK

Hot Engine Start

Apply this procedure when the engine has been shut down at operating temperatures and not restarted after more than 10 minutes. Fuel vapor will likely have formed in the fuel lines between the engine-driven fuel pump and the fuel nozzles, prohibiting a normal start. At very high engine temperatures and longer shutdown periods vapor formation may even propagate beyond the engine-driven fuel pump and the boost pump.

Brakes	HOLD
Bat Master Switches	ON (Check Volts)
Strobe Lights	ON
Mixture	CUT OFF
Fuel Pump	BOOST for 30-60 seconds

Switching the fuel pump to BOOST with the mixture cut-off serves to cool down the fuel line leading to the engine-driven fuel pump and the pump itself. Hot fuel and vapor are routed through the fuel return line to the tanks without being pushed to the cylinders. Afterwards a normal start can be conducted.

Mixture	
Power Lever	FULL FORWARD
Fuel Pump	PRIME, then BOOST
Propeller Area	CLEAR
Power Lever	OPEN 1/4 INCH
Ignition Switch	START (Release after engine starts)
Power Lever	RETARD (to maintain 1000 RPM)
Oil Pressure	CHECK
Alt Master Switches	ON
Avionics Power Switch	ON
Engine Parameters	MONITOR
External Power (If applicable)	DISCONNECT
Amp Meter/Indication	CHECK

Flooded Engine Start

Apply this procedure when a high amount of fuel has been introduced into the cylinders by excessive priming and the engine does not start. This might be indicated by a positive fuel flow indication with intermittent cylinder firing and visible exhaust smoke puffs during cranking.

Mixture...... CUT OFF

TorqueSim SR22/SR22TN	Section 3 Normal Procedures
Power Lever	FULL FORWARD
Propeller Area	CLEAR
Ignition Switch	START (Release after engine starts)
Power Lever	RETARD (to maintain 1000 RPM)
Mixture	FULL RICH
Fuel Pump	BOOST
Oil Pressure	CHECK
Alt Master Switches	ON
Avionics Power Switch	ON
Engine Parameters	MONITOR
Amp Meter/Indication	CHECK

False Engine Start

_

Apply this procedure when the engine fires but immediately quits after start. Most likely the cylinders are primed, but fuel vapor has formed in front of the injection nozzles causing combustion to cease after a few seconds. Additional priming may lead to flooding the cylinders.

Mixture	
Power Lever	FULL FORWARD
Fuel Pump	BOOST
Propeller Area	CLEAR
Power Lever	
Ignition Switch	START (Release after engine starts)
Power Lever	RETARD (to maintain 1000 RPM)
Oil Pressure	CHECK
Alt Master Switches	ON
Avionics Power Switch	ON
Engine Parameters	MONITOR
External Power (If applicable)	DISCONNECT
Amp Meter/Indication	CHECK

Before Taxiing

Flaps	UP (0%)
Radios/Avionics	AS REQUIRED
Cabin Heat/Defrost	AS REQUIRED
Fuel Selector	SWITCH TANK

NOT FOR FLIGHT - FOR SIMULATION USE ONLY

Section 3 Normal Procedures

TorqueSim SR22/SR22TN **Taxiing**

When taxiing, directional control is accomplished with rudder deflection and intermittent braking (toe taps) as necessary. Use only as much power as is necessary to achieve forward movement. Deceleration or taxi speed control using brakes but without a reduction in power will result in increased brake temperature. Taxi over loose gravel at low engine speed to avoid damage to the propeller tips.

WARNING

Maximum continuous engine speed for taxiing is 1000 RPM on flat, smooth, hard surfaces. Power settings slightly above 1000 RPM are permissible to start motion, for turf, soft surfaces, and on inclines. Use minimum power to maintain taxi speed.

If the 1000 RPM taxi power limit and proper braking procedures are not observed, the brake system may overheat and result in brake damage or brake fire.

Parking Brake	DISENGAGE
Brakes	CHECK
HSI Orientation	CHECK
Attitude Gyro	CHECK
Turn Coordinator	CHECK

Before Takeoff

During cold weather operations, the engine should be properly warmed up before takeoff. In most cases this is accomplished when the oil temperature has reached at least 100°F (38°C). In warm or hot weather, precautions should be taken to avoid overheating during prolonged ground engine operation. Additionally, long periods of idling may cause fouled spark plugs.

WARNING

Do NOT take off with frost, ice, snow, or other contamination on the fuselage, wing, stabilizers, and control surfaces

Doors	LATCHED
CAPS Handle	Verify Pin Removed
Seat Belts and Shoulder Harness	SECURE
Air Conditioner	AS DESIRED

Section 3 Normal Procedures

If Air Conditioner is ON for takeoff, there will be a performance impact. Make sure to perform takeoff performance calculations based upon air conditioning setting.

Fuel Quantity	CONFIRM
Fuel Selector	FULLEST TANK
Fuel Pump	BOOST
Mixture	AS REQUIRED
Flaps	SET 50%; CHECK
Transponder	SET
Autopilot	CHECK
Navigation Radios/GPS	SET for Takeoff
Cabin Heat/Defrost	AS REQUIRED
Brakes	HOLD
Power Lever	I 700 RPM
Alternator	CHECK
Pitot Heat	ON
Navigation Lights	ON
Landing Light	ON
Annunciator Lights	CHECK
Verify both ALT I and ALT 2 caution lights out and positive	amps indication for both
Voltage	CHECK
Pitot Heat	AS REQUIRED

Pitot Heat should be turned ON for flight into IMC, visible moisture, or whenever ambient temperatures are $41\,^{\circ}\text{F}$ (5° C) or less.

Navigation Lights	AS REQUIRED
Landing Light	AS REQUIRED
Magnetos	CHECK Left and Right
Ignition Switch	R, note RPM, then BOTH
Ignition Switch	L, note RPM, then BOTH

RPM drop must not exceed 150 RPM for either magneto. RPM differential must not exceed 75 RPM between magnetos. If there is a doubt concerning operation of the ignition system, RPM checks at higher engine speeds will usually confirm whether a deficiency exists.

An absence of RPM drop may indicate faulty grounding of one side of the ignition system or magneto timing set in advance of the specified setting.

Engine Parameters	CHECK
Power Lever	
Flight Instruments, HSI, and Altimeter	CHECK and SET
Flight Controls	FREE and CORRECT
Trim	SET Takeoff
Autopilot	DISCONNECT

Takeoff

Power Check: Check full-throttle engine operation early in takeoff run. The engine should run smoothly and turn approximately 2700 RPM. All engine parameters should read in the green. Discontinue takeoff at any sign of rough operation or sluggish acceleration. Make a thorough full-throttle static run-up before attempting another takeoff.

For takeoff over a gravel surface, advance Power Lever slowly. This allows the airplane to start rolling before high RPM is developed, and gravel will be blown behind the propeller rather than pulled into it.

Flap Settings: Normal and short field takeoffs are accomplished with flaps set at 50%. Takeoffs using 0% are permissible, however, no performance data is available for takeoffs in the flaps up configuration. Takeoffs with 100% flaps are not approved.

Soft or rough field takeoffs are performed with 50% flaps by lifting the airplane off the ground as soon as practical in a tail-low attitude. If no obstacles are ahead, the airplane should be leveled off immediately to accelerate to a higher climb speed.

Takeoffs into strong crosswinds are normally performed with the flaps set at 50% to minimize the drift angle immediately after takeoff. With the ailerons fully deflected into the wind, accelerate the airplane to a speed slightly higher than normal while decreasing the aileron deflection as speed increases then - with authority - rotate to prevent possibly settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

Fuel BOOST should be left ON during takeoff and for climb as required for vapor suppression with hot or warm fuel

TorqueSim SR22/SR22TN Normal Takeoff

Brakes	RELEASE (Steer with Rudder ONLY)
Power Lever	
Engine Parameters	CHECK
Elevator Control	ROTATE Smoothly at 70-73 KIAS
At 80 KIAS, Flaps	UP
Short Field Takeoff	

Flaps	
Brakes	HOLD
Power Lever	FULL FORWARD
Mixture	SET
Engine Parameters	CHECK
Brakes	RELEASE (Steer with Rudder Only)
Elevator Control	ROTATE Smoothly at 70 KIAS
Airspeed at Obstacle	

Climb

Normal climbs are performed flaps UP (0%) and full power at speeds 5 to 10 knots higher than best rate-of-climb speeds. These higher speeds give the best combination of performance, visibility and engine cooling.

For maximum rate of climb, use the best rate-of-climb speeds shown in the rate-of-climb chart in Section 5. If an obstruction dictates the use of a steep climb angle, the best angle-of-climb speed should be used. Climbs at speeds lower than the best rate-of-climb speed should be of short duration to avoid engine-cooling problems.

Climb Power	SET
Flaps	Verify UP
Mixture	LEAN as required for altitude
Engine Parameters	CHECK
Fuel Pump	BOOST

The fuel pump is used for vapor suppression during climb. It is also recommended that the fuel pump be left on after leveling off for 30 minutes following a climb and anytime fuel flow or EGT anomalies occur.
TorqueSim SR22/SR22TN **Cruise**

Normal cruising is performed between 55% and 85% power. The engine power setting and corresponding fuel consumption for various altitudes and temperatures can be determined by using the cruise data.

The selection of cruise altitude is made based on the most favorable wind conditions and the desired power settings. These significant factors should be considered on every trip to reduce fuel consumption.

Fuel Pump	AS REQUIRED
Cruise Power	SET
Mixture	LEAN as required
Engine Parameters	MONITOR

Fuel BOOST must be used for switching from one tank to another. Failures to activate the Fuel Pump before transfer could result in delayed restart if the engine should quit due to fuel starvation.

Fuel Flow and Balance......MONITOR

Cruise Leaning

Mixture Description	Exhaust Gas Temperature	For st the
Best Power	75°F Rich Of Peak EGT	by the
Best Economy	50°F Lean Of Peak EGT	

Under some conditions, engine roughness may occur while operating at best economy. If this occurs, enrich mixture as required to smooth engine operation. Any change in altitude or Power Lever position will require a recheck of EGT indication.

Descent

Altimeter	SET
Cabin Heat/Defrost	AS REQUIRED
Landing Light	ON
Fuel System	CHECK
Mixture	AS REQUIRED
Brake Pressure	CHECK

Before Landing

Seat Belt and Shoulder Harness	SECURE
Fuel Pump	BOOST
Mixture	AS REQUIRED
Flaps	AS REQUIRED
Autopilot	AS REQUIRED

Landing

CAUTION

Landings should be made with full flaps. Landings with less than full flaps are recommended only if the flaps fail to deploy or to extend the aircraft's glide distance due to engine malfunction. Landings with flaps at 50% or 0%; power should be used to achieve a normal glide path and low descent rate. Flare should be minimized.

Normal Landing

Normal landings are made with full flaps with power on or off. Surface winds and air turbulence are usually the primary factors in determining the most comfortable approach speeds.

Actual touchdown should be made with power off and on the main wheels first to reduce the landing speed and subsequent need for braking. Gently lower the nose wheel to the runway after airplane speed has diminished. This is especially important for rough or soft field landings.

Short Field Landing

For a short field landing in smooth air conditions, make an approach at 77 KIAS with full flaps using enough power to control the glide path (slightly higher approach speeds should be used under turbulent air conditions). After all approach obstacles are cleared, progressively reduce power to reach idle just before touchdown and maintain the approach speed by lowering the nose of the airplane. Touchdown should be made power-off and on the main wheels first. Immediately after touchdown, lower the nose wheel and apply braking as required. For maximum brake effectiveness, retract the flaps, hold the control yoke full back, and apply maximum brake pressure without skidding.

Crosswind Landing

Normal crosswind landings are made with full flaps. Avoid prolonged slips. After touchdown, hold

a straight course with rudder and brakes as required.

The maximum allowable crosswind velocity is dependent upon pilot capability as well as aircraft limitations. Operation in direct crosswinds of 20 knots has been demonstrated.

Balked Landing/Go-Around

In a balked landing (go around) climb, disengage autopilot, apply full power, then reduce the flap setting to 50%. If obstacles must be cleared during the go around, climb at 75-80 KIAS with 50% flaps. After clearing any obstacles, retract the flaps and accelerate to the normal flaps up climb speed.

Autopilot	DISENGAGE
Power Lever	
Flaps	
Airspeed	
After clear of obstacles:	
Flaps	UP

After Landing

Power Lever	1000 RPM
Fuel Pump	OFF
Flaps	UP
Transponder	STBY
Lights	AS REQUIRED
Pitot Heat	OFF

As the airplane slows, the rudder becomes less effective and taxiing is accomplished using differential braking.

Shutdown

Fuel Pump	OFF
Throttle	

CAUTION

Note that the engine hesitates as the switch cycles through the "OFF" position. If the engine does not hesitate, one or both magnetos are not grounded. Prominently mark the propeller as being "Hot," and contact maintenance personnel immediately.

Ignition Switch	CYCLE
Mixture	CUTOFF
All Switches	OFF
Magnetos	OFF
ELT	TRANSMIT LIGHT OUT
Chocks, Tie-downs, Pitot Covers	AS REQUIRED

Section 4 Emergency Procedures Table of Contents

Flight Er	wironment	. 2
Inac	dvertent Icing Encounter	.2
Inac	dvertent IMC Encounter	.2
Doe	or Open In Flight	.2
Abnorm	al Landings	. 2
Lan	ding With Failed Brakes	.2
Lan	ding With Flat Tire	. 2
Engine S	ystem	. 3
Lov	v Idle Oil Pressure	. 3
Star	ter Engaged Annunciation	. 3
Fuel Sys	tem	. 3
Lov	v Fuel Quantity	.4
Left	: Fuel Tank Quantity	.4
Righ	nt Fuel Tank Quantity	.4
Fue	l Filter in Bypass Mode	.4
Electrica	al System	. 4
Lov	v Voltage on Main Bus 1	.4
Lov	v Voltage on Main Bus 2	.4
Batt	tery I Current Sensor	. 5
Lov	vAlternator I Output	. 5
Lov	v Alternator 2 Output	. 5

Avionics
Avionics Switch Off5
PFD Cooling Fan Failure5
MFD Cooling Fan Failure5
Pitot Static System
Static Source Blocked6
Pitot Tube Blocked6
Pitot Heat Current Sensor Annunciation
Pitot Heat Required Annunciation6
Flight Control System 6
Electric Trim/Autopilot Failure6
Flap System Exceedance6
Landing Gear System7
Brake Failure During Taxi7
Left/Right Brake Over-Temperature7
Other Conditions
Aborted Takeoff7
Parking Brake Engaged Annunciation7
Communications Failure8

Flight Environment

Inadvertent Icing Encounter

Pitot Heat	ON
Exit Icing Conditions.Turn back or change altitude	
Cabin Heat	MAXIMUM
Windshield Defrost	FULL OPEN
Alternate Induction Air	ON

Inadvertent IMC Encounter

Airplane Control	ESTABLISH straight and level flight
Autopilot	ENGAGE to hold heading and altitude
Autopilot	RESET to initiate 180° turn

Door Open In Flight

The doors on the airplane will remain 1-3 inches open in flight if not latched. If this is discovered on takeoff roll, abort takeoff if practical. If already airborne do not allow efforts to close the door interfere with the primary task of maintaining control of the airplane. Do not attempt to hold door closed. Upon landing flare door may swing open - do not attempt to close door.

Airplane Control MAINTAIN

Abnormal Landings

Landing With Failed Brakes

One brake inoperative

- I. Land on the side of runway corresponding to the inoperative brake
- 2. Maintain directional control using rudder and working brake

Both brakes inoperative

- I. Divert to the longest, widest runway with the most direct headwind
- 2. Land on the downwind side of the runway
- 3. Use the rudder for obstacle avoidance

Landing With Flat Tire

TorqueSim SR22/SR22TN

Main Gear

- I. Land on the side of the runway corresponding to the good tire.
- 2. Maintain directional control with the brakes and rudder.
- 3. Do not taxi. Stop the airplane and perform a normal engine shutdown.

Nose Gear

- I. Land in the center of the runway
- 2. Hold the nosewheel off the ground as long as possible
- 3. Do not taxi. Stop the airplane and perform a normal engine shutdown

Engine System

Low Idle Oil Pressure

If In-FlightLAND as soon as practical

Starter Engaged Annunciation

On-Ground

Ignition Switch	DISENGAGE prior to 20 seconds
Battery Switches	Wait 20 seconds before next start attempt
Bat I Switch	OFF
Engine	Shutdown
STARTER Circuit Breaker	PULL
In-Flight	
Ignition Switch	Ensure not stuck in START
STARTER Circuit Breaker	PULL
Flight	CONTINUE

Engine start will not be available at destination

WARNING

Use extreme caution after shutdown if STARTER circuit breaker required pull (failed relay or solenoid). If breaker is unknowingly or unintentionally reset, starter will instantly engage if Battery I power is supplied; creating a hazard for ground personnel.

Fuel System

TorqueSim SR22/SR22TN Low Fuel Quantity

Section 4 Emergency Procedures

Fuel Quantity Gauges	CHECK
If fuel quantity indicates less than or equal to 14 gallons:	
Land as soon as practical	
If fuel quantity indicates greater than 14 gallons:	
Flight	CONTINUE, MONITOR
Left Fuel Tank Quantity	
Left Fuel Quantity Gauge	CHECK
If left fuel quantity indicates less than or equal to 14 gallons:	
If On-Ground	
If In-Flight	CONTINUE, MONITOR
If left fuel quantity indicates greater than 14 gallons:	
If On-Ground	CORRECT PRIOR TO FLIGHT
If In-Flight	CONTINUE, MONITOR
Right Fuel Tank Quantity	
Right Fuel Quantity Gauge	CHECK
If right fuel quantity indicates less than or equal to 14 gallons:	
If On-Ground	REFUEL PRIOR TO FLIGHT
If In-Flight	CONTINUE, MONITOR
If right fuel quantity indicates greater than 14 gallons:	

If On-Ground.....CORRECT PRIOR TO FLIGHT
If In-Flight.....CONTINUE, MONITOR

Fuel Filter in Bypass Mode

If In-Flight LAND AS SOON AS PRACTICAL Replace fuel filter element prior to next flight

Electrical System

Low Voltage on Main Bus I

I. Perform Alt I Caution (Failure) Checklist

Low Voltage on Main Bus 2

I. Perform Alt I and Alt 2 Caution (Failure) checklists.

Section 4 Emergency Procedures

TorqueSim SR22/SR22TN Battery | Current Sensor

Main Bus 1, 2, and Non-Essential Bus Loads	REDUCE
Main Bus 1, 2, and Essential Bus Voltages	MONITOR
Land as soon as practical	

Low Alternator I Output

ALT I Circuit BreakerCHECK	< and SET
ALT I Master Switch	CYCLE
If alternator does not reset (low AI current and voltage)	
ALT I Master Switch	OFF
Non-Essential Bus Loads	REDUCE
Consider shedding air condition, landing light, yaw servo, and convenience power	,
Continue Flight, avoiding IMC or night flight as able	

Low Alternator 2 Output

ALT 2 Circuit BreakerC	HECK and SET
ALT 2 Master Switch	CYCLE
If alternator does not reset (low A2 current and M2 voltage less than M2 voltage)	
ALT 2 Master Switch	OFF
Continue Flight, avoiding IMC or night flight as able	

Avionics

Avionics Switch Off

AVIONICS Switch	ON, AS REQUIRED
PFD Cooling Fan Failure	
AVIONICS FAN 2 Circuit Breaker	CYCLE
If annunciation does not extinguish:	
Hot cabin temperatures	LAND AS SOON AS PRACTICAL
Cool cabin temperatures	CONTINUE, MONITOR
MFD Cooling Fan Failure	
AVIONICS FAN I Circuit Breaker	CYCLE
If annunciation does not extinguish:	
Hot cabin temperatures	land as soon as practical
Cool cabin temperatures	CONTINUE, MONITOR

Pitot Static System

TorqueSim SR22/SR22TN Static Source Blocked

Pitot HeatON

Alternate Static Source......OPEN

If erroneous readings of the static source instruments (airspeed, altimeter and vertical speed) are suspected, the alternate static source valve, on side of console near pilot's right ankle, should be opened to supply static pressure from the cabin to these instruments. With the alternate static source on, adjust indicated airspeed slightly during climb or approach according to the Airspeed Calibration (Alternate Static Source) table in Section 5 as appropriate for vent/ heater configuration.

Pitot Tube Blocked

Pitot Heat ON

If only the airspeed indicator is providing erroneous information, and in icing conditions, the most probable cause is Pitot ice. If setting Pitot Heat ON does not correct the problem, descend to warmer air. If an approach must be made with a blocked Pitot tube, use known pitch and power settings and the GPS groundspeed indicator, taking surface winds into account.

Pitot Heat Current Sensor Annunciation

Pitot Heat Circuit Breaker	CYCLE
Pitot Heat	CYCLE OFF, ON
If inadvertent icing encounter, perform Inadvertent Icin	g Encounter checklist and:
Airspeed	EXPECT NO RELIABLE INDICATION
EXIT ICING CONDITIONS USING ATTITUDE, ALTITUDE, and POWER instruments	
Pitot Heat Required Annunciation	

Pitot HeatON	ON
--------------	----

Flight Control System

Electric Trim/Autopilot Failure

Airplane Control	MAINTAIN MANUALLY
Autopilot (if engaged)	DISENGAGE
If problem is not corrected:	
Circuit Breakers	PULL AS REQUIRED
PITCH TRIM, ROLL TRIM, YAVV SERVO, and AP SERVOS	
Power Lever	AS REQUIRED
Control Yoke	. MANUALLY HOLD PRESSURE
Land as soon as practical	
Flap System Exceedance	
Airspeed	REDUCE

Landing Gear System

Brake Failure During Taxi

Engine Power	AS REQUIRED
Directional Control	MAINTAIN WITH RUDDER
Brake Pedals	PUMP
Ignition Switch	OFF

Left/Right Brake Over-Temperature

Stop aircraft and allow brakes to cool

Other Conditions

Aborted Takeoff

Power Lever	IDLE
Brakes	AS REQUIRED

CAUTION

For maximum brake effectiveness, retract flaps, hold control yoke full back, and bring the airplane to a stop by smooth, even application of the brakes.

After a high-speed aborted takeoff, brake temperatures will be elevated; subsequent aborted takeoffs or other high-energy use of the brakes may cause brake overheat, failure and possibly even fire. A 25-minute cooling time is recommended following high-energy use of the brake system before attempting to conduct operations that may require further high-energy braking. Brake temperature indicator should be inspected prior to flight following a highenergy brake event (refer to Preflight Walk-Around Checklist for detail).

Parking Brake Engaged Annunciation

Parking Brake RELEASE

Monitor CAS for BRAKE TEMP caution. Stop aircraft and allow the brakes to cool if necessary.

TorqueSim SR22/SR22TN Communications Failure

Switches, Controls	CHECK
Frequency	CHANGE
Circuit Breakers	SET
Headset	CHANGE
Hand Held Microphone	CONNECT

In the event of an audio panel power failure the audio panel connects COM I to the pilot's headset and speakers. Setting the audio panel 'Off' will also connect COM I to the pilot's headsets and speakers.

Section 5

Performance Data

Table of Contents

Stall Speeds2
Takeoff Distance
Takeoff Distance - 3400 lbs
Takeoff Distance - 2900 lbs4
Takeoff Rate of Climb
Enroute Rate of Climb
Cruise Performance7
Range / Endurance Profile9
Landing Distance

TorqueSim SR22/SR22TN Stall Speeds

Weight	
CG	On Table
Power	Idle
Bank Angle	On Table

KIAS values may not be accurate at stall

Waisht	Donk Angle	STALL SPEEDS									
weight	Balik Angle	Flap	s 0%	Flaps	50%	Flaps	100%				
Lbs	Deg	KIAS KCAS		KIAS	KCAS	KIAS	KCAS				
	0	73	70	66	64	62	60				
	15	74	71	67	65	64	61				
3400 / FWD CG	30	76	75	71	69	66	64				
	45	83	83	77	76	72	71				
	60	99	99	90	90	84	84				
	0	72	69	65	63	60	58				
	15	73	70	66	64	61	59				
3400 / AFT CG	30	76	74	69	67	63	62				
	45	82	82	76	75	69	69				
	60	98	98	89	89	82	82				

Takeoff Distance

Winds	0 kts
Runway	Dry, Level, Paved
Flaps	
Air Conditioner	Off
Throttle	Full Open
Mixture	Set

Corrections:

- Headwind Subtract 10% from computed distance for each 12 knots headwind.
- Tailwind Add 10% for each 2 knots tailwind up to 10 knots.
- Grass Runway, Dry Add 20% to ground roll distance.
- Grass Runway, Wet Add 30% to ground roll distance.
- Sloped Runway Increase table distances by 22% of the ground roll distance at Sea Level, 30% of the ground roll distance at 5000 ft, 43% of the ground roll distance at 10,000 ft for each 1% of upslope. Decrease table distances by 7% of the ground roll distance at Sea Level, 10% of the ground roll distance at 5000 ft, and 14% of the ground roll distance at 10,000 ft for each 1% of downslope.

TorqueSim SR22/SR22TN

- Aircraft with optional Air Conditioning System; Add 100 feet to ground roll distance and 150 feet to distance over 50' obstacle if Air Conditioner is ON during takeoff.
- For operation in outside air temperatures colder than this table provides, use coldest data shown.
- For operation in outside air temperatures warmer than this table provides, use extreme caution.
- If brakes are not held while applying power, distances apply from point where full throttle and mixture setting is complete.

Takeoff Distance - 3400 lbs

PRESS	DISTANCE						
ALI FT	FT	0	10	20	30	40	ISA
SL	Grnd Roll	917	990	1067	1146	1229	1028
	50 ft	1432	1539	1650	1764	1883	1594
1000	Grnd Roll	1011	1092	1176	1264	1355	1117
	50 ft	1574	1691	1813	1939	2069	1728
2000	Grnd Roll	1116	1206	1299	1395	1496	1215
	50 ft	1732	1861	1995	2133	2276	1874
3000	Grnd Roll	1234	1332	1435	1542	1653	1323
	50 ft	1907	2049	2196	2349	2507	2035
4000	Grnd Roll	1365	1474	1588	1706	1829	1441
	50 ft	2102	2259	2422	2590	2764	2212
5000	Grnd Roll	1512	1633	1758	1889	2025	1572
	50 ft	2320	2493	2673	2858	3051	2407
6000	Grnd Roll	1676	1810	1950	2095	2245	1717
	50 ft	2564	2755	2953	3159	3371	2622
7000	Grnd Roll	1861	2009	2164	2325	2492	1877
	50 ft	2837	3048	3267	3494	3729	2859
8000	Grnd Roll	2068	2233	2405	2584	2770	2054
	50 ft	3142	3376	3619	3871	4131	3122
9000	Grnd Roll	2302	2485	2677	2875	3082	2250
	50 ft	3485	3744	4014	4293	4581	3412
10000	Grnd Roll	2564	2769	2982	3204	3434	2468
	50 ft	3870	4158	4457	4767	5088	3733

TorqueSim SR22/SR22TN Takeoff Distance - 2900 lbs

PRESS	DISTANCE	TEMPERATURE ~°C							
ALT FT	FT	o	10	20	30	40	ISA		
SL	Grnd Roll	610	659	710	763	818	684		
	50 ft	971	1043	1118	1195	1275	1080		
1000	Grnd Roll	673	727	783	841	902	743		
	50 ft	1066	1146	1228	1313	1401	1170		
2000	Grnd Roll	743	802	864	929	995	809		
	50 ft	1173	1260	1351	1444	1541	1269		
3000	Grnd Roll	821	887	955	1026	1100	880		
	50 ft	1292	1388	1487	1590	1697	1378		
4000	Grnd Roll	908	981	1057	1135	1217	959		
	50 ft	1424	1530	1639	1753	1871	1498		
5000	Grnd Roll	1006	1086	1170	1257	1348	1046		
	50 ft	1571	1688	1809	1935	2065	1630		
6000	Grnd Roll	1116	1205	1298	1394	1494	1143		
	50 ft	1736	1865	1999	2138	2281	1775		
7000	Grnd Roll	1238	1337	1440	1547	1659	1249		
	50 ft	1920	2063	2211	2365	2523	1936		
8000	Grnd Roll	1376	1486	1601	1720	1843	1367		
	50 ft	2127	2285	2449	2619	2795	2113		
9000	Grnd Roll	1532	1654	1781	1914	2051	1498		
	50 ft	2359	2534	2716	2904	3099	2309		
10000	Grnd Roll	1707	1843	1985	2132	2285	1643		
	50 ft	2619	2814	3016	3225	3441	2527		

TorqueSim SR22/SR22TN **Takeoff Rate of Climb**

Power	Full Throttle
Mixture	Set per Placard
Flaps	
Airspeed	Best Rate of Climb

For operation in air colder than this table provides, use coldest data shown.

For operation in air warmer than this table provides, use extreme caution.

Woight	Pressure	Climb	RATE OF CLIMB (FPM)							
weight	Altitude	Speed								
Lbs	Ft	KIAS	-20	0	20	40	ISA			
	Sea Level	91	1326	1317	1300	1277	1304			
3400	2000	90	1214	1200	1179	1153	1189			
	4000	89	1100	1082	1057	1028	1074			
	6000	88	985	962	934	901	958			
	8000	88	869	842	809	774	843			
	10000	87	851	719	683	644	727			
	Sea Level	91	1646	1638	1621	1598	1626			
	2000	90	1518	1505	1484	1457	1794			
2000	4000	89	1389	1371	1346	1316	1363			
2900	6000	88	1259	1236	1207	1172	1232			
	8000	88	1128	1100	1066	1028	1101			
	10000	87	995	962	924	883	971			

TorqueSim SR22/SR22TN Enroute Rate of Climb

Power	Full Throttle
Mixture	
Flaps	
Airspeed	Best Rate of Climb

For operation in air colder than this table provides, use coldest data shown.

For operation in air warmer than this table provides, use extreme caution.

Weight	Pressure	Climb	RATE OF CLIMB (FPM)							
	Altitude	Speed								
Lbs	Ft	KIAS	-20	0	20	40	ISA			
	Sea Level	101	1428	1414	1392	1366	1398			
	2000	100	1311	1292	1267	1238	1279			
	4000	99	1193	1170	1141	1108	1160			
	6000	98	1074	1046	1046 1013 977		1041			
3400	8000	97	953	921	20 1392 1267 1141 1013 884 754 623 490 355 1726 1584 1441 1296 1151 1004 855 706 556	845	922			
	10000	96	830	794	754	712	803			
	12000	95	706	666	623	577	684			
	14000	94	581	537	490	441	565			
	16000	93	454	406	355	303	446			
	Sea Level	101	1761	1748	1726	1698	1732			
	2000	100	1629	1610	1584	1552	1596			
	4000	99	1494	1471	1441	1405	1461			
	6000	98	1359	1331	1296	1257	1326			
2900	8000	97	1222	1189	CLIMB (FPM) 20 40 1392 1366 1267 1238 1141 1108 1013 977 884 845 623 577 490 441 1726 1698 490 441 1552 303 1726 1698 1726 1698 1726 1698 11584 1552 11584 1552 11584 1552 11584 1552 1151 1108 1296 1257 11004 958 855 806 706 653 556 499	1191				
	10000	95	1084	1046	1004	958	1056			
	12000	95	945	902	855	806	921			
	14000	93	804	757	706	653	787			
	16000	92	662	610	556	499	653			

TorqueSim SR22/SR22TN **Cruise Performance**

Winds 0 kts

Shaded Cells: Cruise power above 85% not recommended.

Aircraft with optional Air Conditioning System - Cruise performance is reduced by 2 knots. For maximum performance, the air-conditioner should be off.

Press			IS	A - 30°(C		ISA		IS	A + 30°	С
Alt	RPM	MAP	PWR	KTAS	GPH	PWR	KTAS	GPH	PWR	KTAS	GPH
2000	2700	27.4	103%	186	24.6	98%	186	23.3	93%	181	22.0
	2600	27.4	99%	183	23.5	94%	183	22.2	89%	178	21.5
	2500	27.4	93%	179	22.1	88%	179	20.9	84%	174	20.8
	2500	26.4	89%	176	21.1	84%	176	19.9	80%	171	20.2
	2500	25.4	84%	173	20.0	80%	173	19.0	76%	168	19.5
	2500	24.4	80%	170	19.0	76%	170	18.0	72%	165	18.8
	2500	23.4	76%	167	18.0	72%	167	17.0	68%	162	18.1
4000	2700	25.4	96%	185	22.9	91%	185	21.6	87%	180	20.8
	2600	25.4	92%	182	21.9	87%	182	20.7	83%	177	20.6
	2500	25.4	87%	178	20.6	82%	178	19.5	78%	173	19.9
	2500	24.4	82%	175	19.5	78%	175	18.5	74%	170	19.2
	2500	23.4	78%	172	18.5	74%	172	17.5	70%	167	18.5
	2500	22.4	73%	169	17.4	69%	169	16.5	66%	163	17.7
	2500	21.4	69%	165	16.4	65%	165	15.5	62%	159	16.9
6000	2700	23.5	89%	184	21.2	85%	184	20.1	81%	179	19.6
	2600	23.5	85%	181	20.3	81%	181	19.2	77%	176	19.1
	2500	23.5	80%	177	19.1	76%	177	18.1	72%	172	18.3
	2500	22.5	76%	174	18.1	72%	174	17.1	68%	169	17.6
	2500	21.5	72%	170	17.0	68%	170	16.1	64%	165	16.9
	2500	20.5	67%	166	15.9	64%	166	15.1	60%	161	16.1
	2500	19.5	63%	162	14.9	59%	162	14.1	56%	157	15.3

TorqueSim SR22/SR22TN

Press			IS	A - 30°0	C	ISA			ISA + 30°C		
Alt	RPM	MAP	PWR	KTAS	GPH	PWR	KTAS	GPH	PWR	KTAS	GPH
8000	2700	21.7	83%	183	19.7	78%	183	18.6	75%	178	17.7
	2600	21.7	79%	180	18.8	75%	180	17.8	71%	175	17.0
	2500	21.7	75%	176	17.7	71%	176	16.8	67%	171	16.0
	2500	20.7	70%	172	16.7	66%	172	15.8	63%	167	15.0
	2500	19.7	66%	168	15.6	62%	168	14.8	59%	163	14.0
	2500	18.7	61%	163	14.5	58%	163	13.8	55%	158	13.1
	2500	17.7	57%	159	13.5	54%	159	12.8	51%	153	12.1
10000	2700	20.0	77%	182	18.2	73%	182	17.3	69%	176	16.4
	2600	20.0	71%	177	17.0	68%	177	16.1	64%	172	15.3
	2500	20.0	67%	173	16.0	64%	173	15.1	61%	167	14.4
	2500	19.0	63%	168	14.9	59%	168	14.1	56%	163	13.4
	2500	18.0	58%	163	13.8	55%	163	13.1	52%	158	12.5
	2500	17.0	54%	158	12.8	51%	158	12.1	48%	153	11.5
12000	2700	18.5	71%	180	16.9	67%	180	16.0	64%	175	15.2
	2600	18.5	68%	177	16.2	64%	177	15.3	61%	172	14.5
	2500	18.5	64%	173	15.2	60%	173	14.4	58%	167	13.7
	2500	17.5	59%	168	14.1	56%	168	13.4	53%	162	12.7
	2500	16.5	55%	162	13.0	52%	162	12.3	49%	157	11.7
	2500	15.5	50%	156	12.0	48%	156	11.3	45%	151	10.8
14000	2700	17.1	66%	178	15.6	62%	178	14.8	59%	173	14.1
	2600	17.1	63%	175	14.9	60%	175	14.1	57%	170	13.5
	2500	17.1	59%	171	14.1	56%	171	13.3	53%	165	12.7
	2500	16.1	55%	165	13.0	52%	165	12.3	49%	159	11.7
	2500	15.1	50%	159	11.9	47%	159	11.2	45%	153	10.7
16000	2700	15.8	61%	176	14.5	58%	176	13.7	55%	171	13.0
	2600	15.8	58%	173	13.8	55%	173	13.1	52%	167	12.5
	2500	15.8	55%	168	13.0	52%	168	12.3	49%	163	11.7
	2500	14.8	50%	162	11.9	47%	162	11.3	45%	156	10.7
17000	2700	15.2	59%	175	13.9	55%	175	13.2	53%	169	12.5
	2600	15.2	56%	171	13.3	53%	171	12.6	50%	166	12.0
	2500	15.2	53%	167	12.5	50%	167	11.9	47%	162	11.3
	2500	14.2	48%	160	11.4	45%	160	10.8	43%	155	10.3

TorqueSim SR22/SR22TN

Range / Endurance Profile

Weight	3400 lbs
Winds	0 kts
Temperature	Standard Day
Mixture	Best Economy
Total Fuel	

Fuel Remaining For Cruise is equal to 92.0 gallons usable, less climb fuel, less 9.8 gallons for 45 minutes IFR reserve fuel at 47% power (ISA @ 10,000 ft PA), less descent fuel, less fuel used prior to takeoff.

Range and endurance shown includes descent to final destination at approximately 178 KIAS and 500 fpm.

Aircraft with optional air-conditioning system - Range is decreased by 1%. For maximum range the air-conditioner should be off.

Aircraft with optional Air Conditioning System - Cruise performance is reduced by 2 knots. For maximum performance, the air-conditioner should be off.

75% POWER Mixture: Best Powe								
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range	
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal	
SL	0.0	81.3	166	17.8	4.6	763	9.3	
2000	0.7	81.1	170	17.8	4.6	775	9.6	
4000	1.3	80.4	173	17.8	4.5	786	9.8	
6000	2.0	79.7	177	17.8	4.5	797	10.0	
8000	2.7	79.0	180	17.8	4.4	811	10.3	

65% POWER

Mixture: Best Power

Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal
SL	0.0	81.3	158	15.4	5.3	838	10.3
2000	0.7	81.1	161	15.4	5.3	850	10.5
4000	1.3	80.4	165	15.4	5.2	862	10.7
6000	2.0	79.7	168	15.4	5.2	874	11.0
8000	2.7	79.0	171	15.4	5.1	887	11.2
10000	3.5	78.2	174	15.4	5.1	899	11.5
12000	4.4	77.1	178	15.4	5.0	912	11.8

Press Alt Fuel For GalFuel Remaining For Cruise GalAirspeed Airspeed FlowFuel Flow FlowEndurance Flow HoursRange Range NMSpecifi Range NMFTGalGalKTASGPHHoursNMNm/GalSL0.081.814913.16.393111.4	55% POWER Mixture: Best F							est Power
FT Gal KTAS GPH Hours NM Nm/Ga SL 0.0 81.8 149 13.1 6.3 931 11.4	Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range
SL 0.0 81.8 149 13.1 6.3 931 11.4	FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal
	SL	0.0	81.8	149	13.1	6.3	931	11.4
2000 0.7 81.1 152 13.1 6.2 943 11.6	2000	0.7	81.1	152	13.1	6.2	943	11.6
4000 1.3 80.4 154 13.1 6.2 955 11.9	4000	1.3	80.4	154	13.1	6.2	955	11.9
6000 2.0 79.7 157 13.1 6.1 968 12.2	6000	2.0	79.7	157	13.1	6.1	968	12.2
8000 2.7 79.0 160 13.1 6.0 980 12.4	8000	2.7	79.0	160	13.1	6.0	980	12.4
10000 3.5 78.3 163 13.1 6.0 993 12.7	10000	3.5	78.3	163	13.1	6.0	993	12.7
12000 4.4 77.4 166 13.1 5.9 1005 13.0	12000	4.4	77.4	166	13.1	5.9	1005	13.0
14000 5.3 76.5 169 13.1 5.8 1018 13.4	14000	5.3	76.5	169	13.1	5.8	1018	13.4

55% POWER Mixture: Best Ec							
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal
SL	0.0	81.8	149	11.3	7.2	1074	13.1
2000	0.7	81.1	152	11.3	7.2	1088	13.4
4000	1.3	80.4	154	11.3	7.1	1108	13.7
6000	2.0	79.7	157	11.3	7.0	1115	14.0
8000	2.7	79.0	160	11.3	7.0	1129	14.3
10000	3.5	78.3	163	11.3	6.9	1143	14.6
12000	4.4	77.4	166	11.3	6.8	1156	15.0
14000	5.3	76.5	169	11.3	6.7	1170	15.4

Landing Distance

Winds	0 kts
Runway	Dry, Level, Paved
Flaps	
Power	

(with smooth reduction to idle prior to touchdown)

- Headwind Subtract 10% from table distances for each 13 knots headwind.
- Tailwind Add 10% to table distances for each 2 knots tailwind up to 10 knots.
- Grass Runway, Dry Add 20% to ground roll distance.
- Grass Runway, Wet Add 60% to ground roll distance.

TorqueSim SR22/SR22TN

Sloped Runway - Increase table distances by 27% of the ground roll distance for each 1% of downslope. Decrease table distances by 9% of the ground roll distance for each 1% of upslope.

CAUTION

• For operation in outside air temperatures colder than this table provides, use coldest data shown.

• For operation in outside air temperatures warmer than this table provides, use extreme caution.

PRESS	DISTANCE		TEMPERATURE ~°C						
FT	FT	0	10	20	30	40	ISA		
SL	Grnd Roll	1082	1121	1161	1200	1240	1141		
	Total	2262	2316	2372	2428	2485	2344		
1000	Grnd Roll	1122	1163	1204	1245	1286	1175		
	Total	2317	2374	2433	2492	2551	2391		
2000	Grnd Roll	1163	1206	1248	1291	1334	1210		
	Total	2375	2436	2497	2559	2621	2441		
3000	Grnd Roll	1207	1251	1295	1339	1384	1247		
	Total	2437	2501	2565	2630	2696	2493		
4000	Grnd Roll	1252	1298	1344	1390	1436	1285		
	Total	2503	2569	2637	2705	2774	2548		
5000	Grnd Roll	1300	1348	1395	1443	1490	1324		
	Total	2572	2642	2713	2785	2857	2605		
6000	Grnd Roll	1350	1399	1449	1498	1547	1365		
	Total	2645	2719	2794	2869	2945	2665		
7000	Grnd Roll	1402	1453	1504	1556	1607	1408		
	Total	2723	2800	2879	2958	3038	2728		
8000	Grnd Roll	1456	1509	1563	1616	1669	1452		
	Total	2805	2887	2969	3052	3136	2794		
9000	Grnd Roll	1513	1569	1624	1679	1735	1497		
	Total	2892	2978	3064	3152	3240	2863		
10000	Grnd Roll	1573	1630	1688	1746	1803	1545		
	Total	2984	3074	3165	3257	3350	2936		

Section 6 Weight and Balance Table of Contents

Loading Data	2
0	
	-
Loading Form	
Moment Limits	4

TorqueSim SR22/SR22TN Loading Data

Use the following table to determine the moment/1000 for fuel and payload items to complete the Loading Form.

Weight	Fwd Pass	Aft Pass	Baggage	Fuel	Weight	Fwd Pass	Aft Pass	Fuel
LB	FS 143.5	FS 180.0	FS 208.0	FS 154.9	LB	FS 143.5	FS 180.0	FS 154.9
20	2.9	3.6	4.2	3.1	300	43.1	54.0	46.5
40	5.7	7.2	8.3	6.2	320	45.9	57.6	49.6
60	8.6	10.8	12.5	9.3	340	48.8	61.2	52.7
80	11.5	14.4	16.6	12.4	360	51.7	64.8	55.8
100	14.4	18.0	20.8	15.5	380	54.5	68.4	58.9
120	17.2	21.6	25.0	18.6	400	57.4	72.0	62.0
140	20.1	25.2	27.04*	21.7	420	60.3	75.6	65.1
160	23.0	28.8		24.8	440	63.1	79.2	68.2
180	25.8	32.4		27.9	460			71.3
200	28.7	36.0		31.0	480			74.4
220	31.6	39.6		34.1	500			77.5
240	34.4	43.2		37.2	520			80.5
260	37.3	46.8		40.3	552**			85.5
280	40.2	50.4		43.4			·	

*130 lb Maximum

**92 U.S. Gallons Usable

TorqueSim SR22/SR22TN Loading Form

Use the following form to determine the takeoff weight and moment.

Item	Description	Weight LB	Moment/ 1000
1.	Basic Empty Weight Includes unusable fuel & full oil		
2.	Front Seat Occupants Pilot & Passenger (total)		
3.	Rear Seat Occupants		
4.	Baggage Area <i>130 lb maximum</i>		
5.	Zero Fuel Condition Weight Sub total item 1 thru 4		
6.	Fuel Loading 92 Gallon @ 6.0 lb/gal. Maximum		
7.	Ramp Condition Weight Sub total item 5 and 6		
8.	Fuel for start, taxi, and run-up Normally 9 lb at average moment of 1394.	-	-
9.	Takeoff Condition Weight Subtract item 8 from item 7		

TorqueSim SR22/SR22TN Moment Limits

Use the following chart or table to determine if the weight and moment from the completed Weight and Balance Loading Form are within limits.

Weight	Mome	nt/1000	Weight	Momen	t/1000
LB	Minimum	Maximum	LB	Minimum	Maximum
2200	304	326	2850	398	422
2250	311	333	2900	406	430
2300	318	341	2950	414	437
2350	326	348	3000	421	444
2400	333	355	3050	429	452
2450	340	363	3100	437	459
2500	347	370	3150	444	467
2550	354	378	3200	452	474
2600	362	385	3250	460	481
2650	369	392	3300	467	489
2700	375	400	3350	475	496
2750	383	407	3400	483	504
2800	390	415			

Section 7

Tornado Alley Turbonormalizing System Table of Contents

General	2	Shutdown	8
Engine	2	Emergency Procedures	9
Airspeed Limitations	2	Unexpected Loss of Manifold Pressure	9
Power Plant Limitations	2	Engine Failure In-Flight with Idle Power	9
Altitude Limits	2	CAPS Deployment at High Altitudes	10
Normal Procedures	3	Performance	11
Airspeeds for Normal Operation	3	Cruise Performance	11
Preflight Inspection	3	Range / Endurance Profile - LOP	14
Starting Engine	3	Range / Endurance Profile - ROP	16
Before Takeoff	3	System Description	
Takeoff	4	Turbonormalizing System	18
Climb	4		
Cruise Climb - Mixture Lean of Peak	5		
Use of High Boost / Prime	5		
During Climb, Cruise, and Descent	6		
Cruise Leaning	6		
Maximum Cruise Power	7		
Economy Cruise Power	7		
Descent	7		
Rapid Descent	7		
Before Landing	8		
After Landing	8		

TorqueSim SR22/SR22TN General

Engine

The airplane is powered by Teledyne Continental Motors engine model IO-550-N, fuelinjected, direct drive, air-cooled, horizontally opposed, 6-cylinder, 550 cubic inch displacement, rated at 310 horsepower. The engine has been modified by the addition of the Tornado Alley Turbonormalizing System which provides 29 inches of manifold pressure to 25,000 feet.

Airspeed Limitations

V_{NE} up to 17,500 ft MSL	200 KIAS / 204 KCAS
V _{NE} at 25,000 ft MSL	170 KIAS / 173 KCAS
V_{NO} up to 17,500 ft MSL	177 KIAS / 180 KCAS
V _{NO} at 25,000 ft MSL	151 KIAS / 153 KCAS

Power Plant Limitations

	CAUTION	
	Above FL200, do not reduce manifold pressure below FL/10 (ex. FL 250, 25" MP minimum) to avoid compressor surge.	
Turbo	ocharger Inlet Temperature (TIT) MaxI7	50° F
Fuel I	Flow Max	GPH
Manif	fold Pressure Max	inHg

Altitude Limits

Maximum Takeoff Altitude	10,000 ft MSL
Maximum Operating Altitude	25,000 ft MSL

TorqueSim SR22/SR22TN Normal Procedures

Airspeeds for Normal Operation

Enroute Climb, Flaps Up...... 120 KIAS

Preflight Inspection

Perform Preflight Inspection per basic POH. Additionally, perform the following inspection:

Nose, Right and Left Sides: Grasp the end of each tailpipe where it exits the lower cowl area and confirm each is secure. If there is any indication that the tailpipe is not fully secure, repair before further flight. Do not fly the aircraft with a loose tailpipe.

Starting Engine

(Add to procedure)

Electric Fuel PumpLOW BOOST

If the engine is warm priming is not required. On the first start of the day, especially under cool ambient conditions, holding the Fuel Pump switch to the HIGH BOOST/ PRIME position for 2 seconds will improve starting.

Mixture..... LEAN until RPM rises to a maximum

Before Takeoff

(Add to procedure)

Electric Fuel PumpLOW BOOST

CAUTION

Because this aircraft has a turbonormalizing system that maintains near sea level manifold pressure for all takeoffs, The mixture should normally be full rich for takeoff, even at high elevation airports. Leaning for takeoff and during maximum performance climb may cause excessive cylinder head temperatures.

For maximum power operations (Power Lever full forward 2700 RPM, 29.6 in. Hg manifold pressure) fuel flow should be 35 to 36 GPH. On hot days takeoff performance will be improved slightly with the fuel flow at 34 GPH until clear of obstructions, then the fuel flow should be returned to the 35 to 36 GPH range.

Section 7 Tornado Alley Turbonormalizing System

TorqueSim SR22/SR22TN Takeoff

(Add to procedure)

Power Check:

- Check full-throttle engine operation early in takeoff run
- The engine should run smoothly and turn approximately 2700 rpm
- All engine parameters should read in the green

MP may temporarily increase to 31 - 32 in Hg on first flight of the day due to cooler oil temperatures and associated higher oil pressures. This is acceptable under these conditions but normal full throttle should be 29.6 in. Hg. The fuel flow will normally also increase in proportion to the increase in manifold pressure. If manifold pressure exceeds 32 inches on takeoff or during full power climbs, reduce power to maintain no more than 32.0 in Hg.

As the oil temperature increases during the climb the full power manifold pressure will steadily decline to a level near the normal 29.6 inches manifold pressure value at the top of the green arc. If the engine operates above 31.0 inches for more than two minutes after takeoff, then the system needs to be readjusted. During full power climbs or high power cruise with the oil temperature above 190° F, if the manifold pressure consistently exceeds 29.6 inches, then the system should be adjusted to reduce manifold pressure under these conditions.

The electric Fuel Pump should be in the LOW BOOST position during takeoff and for climb. Leave the Fuel Pump in the LOW BOOST position for 30 minutes after leveling off after the climb to allow the temperature of the fuel in the tanks to stabilize. Above 18,000 feet, HIGH BOOST / PRIME may be required on hot days for vapor suppression.

Climb

Oxygen	AS REQUIRED
Power Lever	FULL FORWARD
Mixture	FULL RICH
Airspeed	Vy
After reaching altitude, for noise abatement considerations	
Below 7,500 ft	I 20 KIAS
Above 7,500 ft	I 30 KIAS
Electric Fuel Pump	LOW BOOST
Fuel Flow	MONITOR

TorqueSim SR22/SR22TN

During full power climb full, rich fuel flow may slowly decline from the normal sea level range of 35 to 36 GPH down to 33 GPH. This is acceptable, but will usually be corrected by use of LOW BOOST

(below 18,000 feet) or HIGH BOOST/PRIME (above 18,000 feet). If cylinder head temperatures consistently exceed 380°F, use higher airspeeds for better cooling.

Engine Parameters MONITOR

To avoid excessive CHTs, verify electric Fuel Pump is in the LOW BOOST position. For increased engine life do not allow CHTs to continuously exceed 380°F. If any CHT consistently exceeds 380°F during the climb, lower the nose and increase airspeed as required to maintain the hottest CHT at or below 380°F whenever practical. Intermittent CHTs up to 410°F are not a concern. Maximum CHT value remains 460 °F.

Cruise Climb - Mixture Lean of Peak

Cruise climb with the mixture lever set to a lean mixture setting (LOP) is acceptable provided CHTs remain under 380°F. This climb procedure may not be possible in very hot weather, but in moderate temperature conditions, LOP cruise climbs are sometimes useful, especially at altitudes up to 18,000 feet. Depending on aircraft weight and OAT, LOP cruise climbs will result in 600 to 700 FPM rates of climb at 130-140 KIAS. Above 18,000 feet, climbs should be made at full rich mixture as described in Climb Checklist.

Power Lever	
Mixture	
Minimum Airspeed	
Electric Fuel Pump	LOW BOOST

If cylinder head temperatures consistently exceed 380°F, use higher airspeeds for better cooling, and/or make further reductions in fuel flow. If for any reasons, CHTs exceed 410°F, climbs should be made at full rich mixture as described in Climb Checklist.

In icing conditions, lean of peak climb is prohibited; climb at full rich/full power and 120 KIAS until free of icing conditions. If climb performance is inadequate, higher climb rate will be observed at 100 KIAS. If performance necessitates a climb at less 120 KIAS, monitor cylinder head and oil temperatures.

After exiting conditions, continued climb performance may be decreased due to accumulated ice, rich of peak/130 KIAS climb is recommended to cruise altitude if ice contamination is present; if climb performance is found inadequate, maintain airspeed above 100 KIAS and monitor Cylinder Head Temperatures.

Use of High Boost / Prime

Under some extreme environmental conditions, the use of the electric fuel pump in the HIGH BOOST / PRIME position may be required in flight above 18,000 feet to adequately suppress vapor formation. This condition is most likely to occur during climbs above 18,000 feet on hot days with warm or hot fuel in the tanks. Except for aid in starting the engine,

TorqueSim SR22/SR22TN

do not use HIGH BOOST / PRIME below 18,000 feet. Above 18,000 feet, if there is a loss of fuel flow or vapor locking is suspected, turn the electric fuel pump to HIGH BOOST /PRIME POSITION and reset the mixture as required to maintain adequate stable fuel flow. Vapor locking is most often indicated by any or a combination of the following:

- Fluctuations in normal fuel flow possibly coupled with abnormal engine operation;
- Rising EGTs and TIT coupled with falling fuel flow
- Rising CHTs (late in the process)

After the aircraft is in cruise flight for 30 minutes or more, the electric fuel pump should be returned to the LOW BOOST position or OFF, as conditions permit.

During Climb, Cruise, and Descent

Oxygen AS REQUIRED

Cruise Leaning

Normal cruise flight is accomplished with engine power settings between 65% and 85% power. The engine power setting and corresponding fuel consumption for various altitudes and temperatures can be determined by using the cruise performance data in Section 5.

Normal cruise power settings will be conducted with the mixture lever positioned to operate the engine with the mixture set lean of peak EGT or TIT.

- Maximum Cruise Power
 - Power Lever: Max available MAP at 2500 RPM
 - Mixture: 17.6 GPH (~85% Power)
 - High CHT below 380° F
- Economy Cruise Power
 - Power Lever 24" MAP at 2500 RPM
 - Mixture 13.0 14.5 GPH (~63% 69% Power)
 - High CHT below 380° F

During colder weather, fuel flows towards the upper end of the cruise fuel flow ranges will be appropriate. If mixture set at 18.0 GPH (max allowable LOP cruise fuel flow) still creates rough running engine in cold weather conditions, reduce MAP as required to provide smooth running engine and readjust mixture as required. During hotter weather, fuel flows nearer to the middle or lower end of the cruise fuel flow ranges will be appropriate.

Position the electric Fuel Pump to the LOW BOOST position when switching from one tank to another. Failure to activate the electric Fuel Pump before transfer could result in delayed restart if the engine should quit due to fuel starvation.

Maximum Cruise Power

Cruise Altitude	ESTABLISHED
Power Lever	
Mixture	
Highest CHT	VERIFY LESS THAN 380° F
Power Lever	
After initial setting of the power MAP may be obtained by slightly	lever to approximately 2500 RPM, some additional increasing the power lever until the RPM increases by 10 to 20 RPM.
Electric Fuel Pump	LOW BOOST
Mixture	
Engine Parameters	MONITOR
Electric Fuel Pump	AS REQUIRED

Economy Cruise Power

Set power lever and mixture to high power cruise as described above. After the engine temperatures and power are stable, further reduce power lever until the MAP is approximately 24 to 26". This should result in a fuel flow in the 13 to 14.5 GPH range. While typically not required, provided that the engine continues to operate smoothly, the mixture may be further leaned for improved economy.

Descent

(add to procedure)

Power..... AS REQUIRED

 Avoid prolonged idle settings. Maintain a CHT of 240°F (116°C) or greater. Typically, no adjustment in the cruise mixture setting is required or appropriate.

Rapid Descent

(add to procedure)	
Power Lever	Smoothly REDUCE MAP 17 to 20 in.Hg
Mixture	Maintain CHTs above 240°F

Before Landing

(add to procedure)	
Electric Fuel Pump	LOW BOOST
Mixture	FULL RICH

After Landing

(add to procedure)	
Electric Fuel Pump	OFF or LOW BOOST
Mixture	LEAN to obtain maximum idle RPM

Shutdown

(add to procedure)	
Electric Fuel Pump (if used)	OFF

Unexpected Loss of Manifold Pressure

If for any reason the aircraft experiences an unexpected loss of normal manifold pressure the aircraft will typically revert to operation similar to a normally aspirated aircraft at approximately the same altitude. However, continued flight should only be conducted to the nearest suitable landing place in order to investigate the cause of the unexpected loss of normal manifold pressure.

Power.....Adjust

Mixture.....Adjust

WARNING

Remain alert for the possibility of a fire in the engine compartment. In the event of a fire in the engine compartment, perform the Engine Fire In Flight checklist.

Descend, to the minimum safe altitude from which a landing may be most safely and expeditiously accomplished, but leaving adequate altitude for a possible forced landing in the event of fire or complete loss of engine power.

Emergency	Declare
Land	As soon as practical

Engine Failure In-Flight with Idle Power

Below 18,000 ft:

Retarding the power lever to idle at or near a full rich mixture setting may cause engine combustion to cease, depending on the position of the fuel pump and altitude. At altitudes below 18,000 feet, advancing the throttle should cause resumption of normal engine operation.

Retarding the power lever to idle at or near a very lean mixture setting may cause engine combustion to cease. This is most likely to occur when the RPM falls with decreasing airspeed on landing or roll out after landing. Using the boost pump in the LOW BOOST position during approach and landing will prevent this condition.

WARNING

Inadvertent use of the HIGH BOOST / PRIME position of the electric Fuel Pump, with the Power Lever near or in the idle position may prevent the engine from regaining power when the Power Lever is advanced

Above 18,000 ft:

The manifold pressure should be maintained at or above 15" Hg (bottom of the green arc on the manifold pressure gage) when the aircraft is operating above 18,000 feet. If the
TorqueSim SR22/SR22TN

Section 7 Tornado Alley Turbonormalizing System

manifold pressure is reduced below 15" Hg and the Power Lever positioned close to or at idle, the engine may cease combustion. Upon advancing the Power Lever, if the wind milling engine does not immediately regain power, the following procedure should be used:

Electric Fuel Pump	LOW BOOST
Power Lever	
Mixture Control	FULL RICH, then LEAN until engine starts, then FULL RICH
Power Lever	AS REQUIRED
Mixture	AS REQUIRED
Electric Fuel Pump	AS REQUIRED

CAPS Deployment at High Altitudes

For any indicated airspeed, as altitudes increase the true air speed of the deployment increases. Higher true air speeds increase the parachute inflation loads. This makes it all the more important for the operator to take all reasonable efforts to slow to the minimum possible airspeed prior to deploying the CAPS.

Section 7 Tornado Alley Turbonormalizing System

TorqueSim SR22/SR22TN **Performance**

Performance of the airplane with the Tornado Alley Turbonormalizing System is equal to or better than the performance as listed in the basic manual. Except for the following tables refer to the basic manual.

Cruise Performance

Power	As Noted
Mixture	As Noted
Cruise Weight	
Winds	0 kts

Monitor Cylinder Heat Temperatures, if any persistently exceeds 380°F, then LEAN the mixture further in 0.3 gph increments until all CHT's are under 380°F. As a rule of thumb, each 0.5 gph change in fuel flow when LOP, and near 380°F, will result in approximately a 15° F change in CHT. Increasing fuel flow will make the CHT hotter. Decreasing fuel flow will make the CHT cooler. It may take several minutes for the CHTs to fully stabilize after a change in fuel flow.

2000 Feet Pressure Altitude								
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-19° C)	ISA (11° C)	ISA + 30° C (41° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	162	168	174		
26.0-28.0	2500	16.0	75%	155	161	166		
22.0-25.0	2500	14.0	65%	147	153	158		

4000 Feet Pressure Altitude								
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-23° C)	ISA (7° C)	ISA + 30° C (37° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	165	171	177		
26.0-28.0	2500	16.0	75%	158	164	169		
22.0-25.0	2500	14.0	65%	150	156	161		

6000 Feet Pressure Altitude ISA - 30° C ISA + 30° C Manifold Engine Fuel Percent ISA Pressure Speed Power (-27° C) (3° C) (33° C) Flow MAP **RPM** GPH **PWR KTAS KTAS KTAS** 29.0-29.5 175 2500 17.6 85% 168 181 2500 26.0-28.0 16.0 75% 161 167 173 22.0-25.0 2500 14.0 65% 153 159 164

8000 Feet I	Pressure Alt	itude				
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-31° C)	ISA (-1° C)	ISA + 30° C (29° C)
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS
29.0-29.5	2500	17.6	85%	172	178	184
26.0-28.0	2500	16.0	75%	164	170	176
22.0-25.0	2500	14.0	65%	156	162	167
10000 Feet	Pressure A	ltitude				
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-35° C)	ISA (-5° C)	ISA + 30° C (25° C)
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS
29.0-29.5	2500	17.6	85%	175	182	188
26.0-28.0	2500	16.0	75%	167	174	180
22.0-25.0	2500	14.0	65%	159	165	171
12000 Feet	Pressure A	ltitude				
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-39° C)	ISA (-9° C)	ISA + 30° C (21° C)
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS
29.0-29.5	2500	17.6	85%	178	186	194
26.0-28.0	2500	16.0	75%	171	177	184
22.0-25.0	2500	14.0	65%	162	168	174
14000 Feet	Pressure A	ltitude				
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-43° C)	ISA (-13° C)	ISA + 30° C (17° C)
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS
29.0-29.5	2500	17.6	85%	182	189	196
26.0-28.0	2500	16.0	75%	174	181	187
22.0-25.0	2500	14.0	65%	165	172	178
16000 Feet	Pressure A	ltitude				
Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-47° C)	ISA (-17° C)	ISA + 30° C (13° C)
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS
29.0-29.5	2500	17.6	85%	186	193	200

75%

65%

16.0

14.0

178

169

185

175

191

182

26.0-28.0

22.0-25.0

2500

2500

18000 Feet Pressure Altitude								
Manifold Engine Fuel Pressure Speed Flow		Fuel Flow	Percent Power	ISA - 30° C (-51° C)	ISA (-21° C)	ISA + 30° C (9° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	190	198	205		
26.0-28.0	2500	16.0	75%	181	189	196		
22.0-25.0	2500	14.0	65%	172	179	185		

20000 Feet Pressure Altitude

Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-55° C)	ISA (-25° C)	ISA + 30° C (5° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	193	201	209		
29.0-29.5	2500	16.8	80%	189	197	204		
26.0-28.0	2500	16.0	75%	185	192	199		
22.0-25.0	2500	14.0	65%	175	182	189		

22000 Feet Pressure Altitude

Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-59° C)	ISA (-29° C)	ISA + 30° C (1° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	197	205	213		
29.0-29.5	2500	16.8	80%	193	201	208		
26.0-28.0	2500	16.0	75%	188	196	203		
22.0-25.0	2500	14.0	65%	178	186	193		

24000 Feet Pressure Altitude

Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-63° C)	ISA (-33° C)	ISA + 30° C (-3° C)		
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS		
29.0-29.5	2500	17.6	85%	201	209	217		
29.0-29.5	2500	16.8	80%	196	205	212		
26.0-28.0	2500	16.0	75%	192	200	207		
22.0-25.0	2500	14.0	65%	182	189	196		

25000 Feet Pressure Altitude

Manifold Pressure	Engine Speed	Fuel Flow	Percent Power	ISA - 30° C (-65° C)	ISA (-35° C)	ISA + 30° C (-5° C)			
MAP	RPM	GPH	PWR	KTAS	KTAS	KTAS			
29.0-29.5	2500	17.6	85%	203	211	219			
29.0-29.5	2500	16.8	80%	198	207	215			
26.0-28.0	2500	16.0	75%	193	202	209			
22.0-25.0	2500	14.0	65%	183	191	198			

Total Fuel	92 gal
Winds	0 kts
Takeon vveight	
Take off \Meight	2400 lbs
Climb Technique	Lean of Peak
Power	As Noted

Fuel Remaining for Cruise is equal to 92.0 gallons usable, less 1.5 gallons for taxi, less climb fuel, less 10.5 gallons for 45 minutes IFR reserve fuel at 60% Power.

85% POWER (Lean of Peak Cruise Fuel Flow, LOP Climb)										
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range			
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal			
2,000	0.8	79.2	168	17.6	4.5	763	9.6			
4,000	1.7	78.3	171	17.6	4.5	776	9.7			
6,000	2.5	77.5	175	17.6	4.4	789	9.9			
8,000	3.5	76.5	178	17.6	4.3	803	10.1			
10,000	4.4	75.6	182	17.6	4.3	817	10.3			
12,000	5.4	74.6	186	17.6	4.2	831	10.5			
14,000	6.5	73.5	189	17.6	4.2	846	10.8			
16,000	7.6	72.4	193	17.6	4.1	861	11.0			
18,000	8.8	71.2	198	17.6	4.0	876	11.2			
20,000	10.6	69.4	201	17.6	3.9	880	11.4			
22,000	12.5	67.5	205	17.6	3.8	883	11.7			
24,000	14.6	65.4	209	17.6	3.7	885	11.9			
25,000	15.7	64.3	211	17.6	3.7	886	12.0			

75% POWER (Lean of Peak Cruise Fuel Flow, LOP Climb)									
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range		
FT	Gal	Gal	KIAS	GPH	Hours	NM	Nm/Gal		
2,000	0.8	79.2	161	16.0	4.9	802	10.0		
4,000	1.7	78.3	164	16.0	4.9	815	10.2		
6,000	2.5	77.5	167	16.0	4.8	829	10.4		
8,000	3.5	76.5	170	16.0	4.8	843	10.7		
10,000	4.4	75.6	174	16.0	4.7	857	10.9		
12,000	5.4	74.6	177	16.0	4.7	872	11.1		
14,000	6.5	73.5	181	16.0	4.6	887	11.3		
16,000	7.6	72.4	185	16.0	4.5	902	11.6		
18,000	8.8	71.2	189	16.0	4.4	917	11.8		
20,000	10.6	69.4	192	16.0	4.3	921	12.0		
22,000	12.5	67.5	196	16.0	4.2	923	12.3		
24,000	14.6	65.4	200	16.0	4.1	925	12.5		
25,000	15.7	64.3	202	16.0	4.0	925	12.6		

65% POWER (Lean of Peak Cruise Fuel Flow, LOP Climb)

Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal
2,000	0.8	79.2	153	14.0	5.7	870	10.9
4,000	1.7	78.3	156	14.0	5.6	884	11.1
6,000	2.5	77.5	159	14.0	5.5	898	11.3
8,000	3.5	76.5	162	14.0	5.5	913	11.6
10,000	4.4	75.6	165	14.0	5.4	927	11.8
12,000	5.4	74.6	168	14.0	5.3	942	12.0
14,000	6.5	73.5	172	14.0	5.2	957	12.3
16,000	7.6	72.4	175	14.0	5.2	972	12.5
18,000	8.8	71.2	179	14.0	5.1	988	12.8
20,000	10.6	69.4	182	14.0	5.0	990	13.0
22,000	12.5	67.5	186	14.0	4.8	992	13.3
24,000	14.6	65.4	189	14.0	4.7	992	13.5
25,000	15.7	64.3	191	14.0	4.6	992	13.6

Pc	wer	As Noted
Cl	imb Technique	Rich of Peak
Ta	keoff Weight	
W	/inds	0 kts
То	tal Fuel	92 gal
	Fuel Remaining for Cruise is equal to 92.0 gallons usab	le, less 1.5 gallons for taxi, less

climb fuel, less 10.5 gallons for 45 minutes IFR reserve fuel at 60% Power.

85% POWER (Lean of Peak Cruise Fuel Flow, ROP Climb)								
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range	
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal	
2,000	1.1	78.9	168	17.6	4.5	758	9.6	
4,000	2.2	77.8	171	17.6	4.4	765	9.7	
6,000	3.2	76.8	175	17.6	4.4	774	9.9	
8,000	4.4	75.6	178	17.6	4.3	781	10.1	
10,000	5.8	74.2	182	17.6	4.2	789	10.3	
12,000	7.2	72.8	186	17.6	4.1	795	10.5	
14,000	8.8	71.2	189	17.6	4.0	802	10.8	
16,000	10.4	69.6	193	17.6	4.0	808	11.0	
18,000	12.1	67.9	198	17.6	3.9	813	11.2	
20,000	13.9	66.1	201	17.6	3.8	816	11.4	
22,000	15.8	64.2	205	17.6	3.7	819	11.7	
24,000	17.8	62.2	209	17.6	3.5	820	11.9	
25,000	18.9	61.1	211	17.6	3.5	820	12.0	

75% POWER (Lean of Peak Cruise Fuel Flow, ROP Climb)									
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range		
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal		
2,000	1.1	78.9	161	16.0	4.9	797	10.0		
4,000	2.2	77.8	164	16.0	4.9	805	10.2		
6,000	3.2	76.8	167	16.0	4.8	813	10.4		
8,000	4.4	75.6	170	16.0	4.7	821	10.7		
10,000	5.8	74.2	174	16.0	4.6	828	10.9		
12,000	7.2	72.8	177	16.0	4.5	835	11.1		
14,000	8.8	71.2	181	16.0	4.5	841	11.3		
16,000	10.4	69.6	185	16.0	4.4	847	11.6		
18,000	12.1	67.9	189	16.0	4.2	852	11.8		
20,000	13.9	66.1	192	16.0	4.1	855	12.0		
22,000	15.8	64.2	196	16.0	4.0	857	12.3		
24,000	17.8	62.2	200	16.0	3.9	857	12.5		
25,000	18.9	61.1	202	16.0	3.8	857	12.6		

65% POWER (Lean of Peak Cruise Fuel Flow, ROP Climb)									
Press Alt	Climb Fuel	Fuel Remaining For Cruise	Airspeed	Fuel Flow	Endurance	Range	Specific Range		
FT	Gal	Gal	KTAS	GPH	Hours	NM	Nm/Gal		
2,000	1.1	78.9	153	14.0	5.6	865	10.9		
4,000	2.2	77.8	156	14.0	5.6	873	11.1		
6,000	3.2	76.8	159	14.0	5.5	882	11.3		
8,000	4.4	75.6	162	14.0	5.4	890	11.6		
10,000	5.8	74.2	165	14.0	5.3	897	11.8		
12,000	7.2	72.8	168	14.0	5.2	903	12.0		
14,000	8.8	71.2	172	14.0	5.1	909	12.3		
16,000	10.4	69.6	175	14.0	5.0	915	12.5		
18,000	12.1	67.9	179	14.0	4.9	919	12.8		
20,000	13.9	66.1	182	14.0	4.7	921	13.0		
22,000	15.8	64.2	186	14.0	4.6	922	13.3		
24,000	17.8	62.2	189	14.0	4.4	921	13.5		
25,000	18.9	61.1	191	14.0	4.4	921	13.6		

Section 7 Tornado Alley Turbonormalizing System

TorqueSim SR22/SR22TN System Description

Turbonormalizing System

The Tornado Alley Turbonormalizing System utilizes two Kelly Aerospace (Formerly Garrett) turbochargers with a Kelly absolute manifold pressure controller, and a Kelly pressure relief valve. The turbochargers are new generation turbochargers designed to provide the same boost as older design turbochargers but with lower compressor discharge temperatures. This increase in efficiency is due to the improved design of the compressor blades and compressor housing. However, to further reduce engine induction temperatures, two side baffle mounted intercoolers are also installed in the system.

The absolute controller and wastegates work in conjunction with each other to provide proper boost pressure to the engine. The wastegate is actuated using engine oil pressure to actuate a small hydraulic cylinder which redirects the engine by-pass exhaust flow around the turbochargers. The absolute pressure controller utilizes an aneroid bellows and spring connected to a valve that regulates the amount of oil flowing out of the wastegate actuator hydraulic control cylinder. The aneroid bellows are located inside a housing that is connected to the output air produced by the compressors.

As compressor outlet pressure increases, the bellows are forced down, opening the normally closed oil control valve. When open, the valve allows metered oil to bypass the wastegate which, in turn, is spring loaded to the open position. Oil passing through the absolute controller is returned to the engine oil sump. The left hand wastegate is a master wastegate connected to a slave wastegate on the right side of the engine. The right hand wastegate is the same as the left hand wastegate, but is slaved to the hydraulic actuator on the left hand wastegate. The two wastegates are mechanically synchronized and move in parallel with each other.

Each wastegate incorporates a typical butterfly exhaust bypass valve. It is operated by a hydraulic actuator utilizing engine oil for operation. The wastegate is spring loaded to the open position. Increasing oil pressure from the engine causes the actuator to work against the spring to close the butterfly valve. The wastegate is located in the exhaust system ahead of the turbocharger turbine. As the butterfly valve opens, it allows exhaust gasses to bypass the turbocharger turbine, thereby controlling the speed and output of the turbocharger. The wastegate helps provide even control of the turbocharger speed and output so that the engine can maintain sea level manifold pressure well into the flight levels.

As turbocharger compressor outlet pressure rises, the aneroid bellows in the absolute pressure controller senses the increase in pressure. When at high engine speed and load and the proper absolute pressure is reached, the force on the aneroid bellows opens the normally closed metering valve. When the oil pressure in the waste gate actuator cylinder is lowered sufficiently, the waste gate actuator spring forces the mechanical linkage to open the waste gates. A portion of the exhaust gases then bypasses the turbocharger turbines, thus preventing further increase of turbocharger speed and holding the compressor outlet absolute pressure to the desired value. Conversely, at

TorqueSim SR22/SR22TN

engine idle, the turbocharger runs slowly with low compressor pressure output; therefore, the low pressure applied to the aneroid bellows is not sufficient to affect the unseating of the normally closed metering valve. Consequently, engine oil pressure keeps the waste gates closed and all of the exhaust flows through the turbocharger turbine sections.

The system is equipped with a magnet latched ALTERNATE AIR DOOR on the left side of the induction system. When any restriction of the air filter is encountered, such as from ice or ice crystal formation, this door will open automatically. The MFD and PFD will provide a message alerting the pilot that the door is open. The door provides an alternate path for warm air from the lower side of the engine compartment to go to both turbochargers when the air filter becomes blocked. After the air filter blockage is removed, the alternate air door may be closed by simply retarding the power lever momentarily and the door will re-latch automatically. In some instances, if there is an unusual surge in engine power, especially at high altitude, the alternate air door may become unlatched. In that event, again, simply retarding the throttle momentarily will re-latch the alternate air door.